MW 12x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010021
GTIN/EAN: 5906301810209
Średnica Ø
12 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
5.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.60 kg / 45.09 N
Indukcja magnetyczna
437.99 mT / 4380 Gs
Powłoka
[NiCuNi] nikiel
1.882 ZŁ z VAT / szt. + cena za transport
1.530 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość za pomocą
formularz kontaktowy
na stronie kontaktowej.
Właściwości oraz kształt magnesu sprawdzisz w naszym
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 12x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010021 |
| GTIN/EAN | 5906301810209 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 5.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.60 kg / 45.09 N |
| Indukcja magnetyczna ~ ? | 437.99 mT / 4380 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Przedstawione dane są wynik symulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 12x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4377 Gs
437.7 mT
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
średnie ryzyko |
| 1 mm |
3688 Gs
368.8 mT
|
3.27 kg / 7.20 lbs
3265.4 g / 32.0 N
|
średnie ryzyko |
| 2 mm |
2999 Gs
299.9 mT
|
2.16 kg / 4.76 lbs
2159.7 g / 21.2 N
|
średnie ryzyko |
| 3 mm |
2386 Gs
238.6 mT
|
1.37 kg / 3.01 lbs
1366.7 g / 13.4 N
|
niskie ryzyko |
| 5 mm |
1474 Gs
147.4 mT
|
0.52 kg / 1.15 lbs
521.4 g / 5.1 N
|
niskie ryzyko |
| 10 mm |
489 Gs
48.9 mT
|
0.06 kg / 0.13 lbs
57.4 g / 0.6 N
|
niskie ryzyko |
| 15 mm |
205 Gs
20.5 mT
|
0.01 kg / 0.02 lbs
10.1 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 12x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.92 kg / 2.03 lbs
920.0 g / 9.0 N
|
| 1 mm | Stal (~0.2) |
0.65 kg / 1.44 lbs
654.0 g / 6.4 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 0.95 lbs
432.0 g / 4.2 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 12x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.92 kg / 2.03 lbs
920.0 g / 9.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.46 kg / 1.01 lbs
460.0 g / 4.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.30 kg / 5.07 lbs
2300.0 g / 22.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 12x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.46 kg / 1.01 lbs
460.0 g / 4.5 N
|
| 1 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 2 mm |
|
2.30 kg / 5.07 lbs
2300.0 g / 22.6 N
|
| 3 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 5 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
| 10 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
| 11 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
| 12 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 12x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
OK |
| 40 °C | -2.2% |
4.50 kg / 9.92 lbs
4498.8 g / 44.1 N
|
OK |
| 60 °C | -4.4% |
4.40 kg / 9.70 lbs
4397.6 g / 43.1 N
|
|
| 80 °C | -6.6% |
4.30 kg / 9.47 lbs
4296.4 g / 42.1 N
|
|
| 100 °C | -28.8% |
3.28 kg / 7.22 lbs
3275.2 g / 32.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 12x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.36 kg / 29.45 lbs
5 536 Gs
|
2.00 kg / 4.42 lbs
2004 g / 19.7 N
|
N/A |
| 1 mm |
11.39 kg / 25.10 lbs
8 082 Gs
|
1.71 kg / 3.77 lbs
1708 g / 16.8 N
|
10.25 kg / 22.59 lbs
~0 Gs
|
| 2 mm |
9.48 kg / 20.91 lbs
7 376 Gs
|
1.42 kg / 3.14 lbs
1423 g / 14.0 N
|
8.54 kg / 18.82 lbs
~0 Gs
|
| 3 mm |
7.77 kg / 17.12 lbs
6 675 Gs
|
1.17 kg / 2.57 lbs
1165 g / 11.4 N
|
6.99 kg / 15.41 lbs
~0 Gs
|
| 5 mm |
5.01 kg / 11.05 lbs
5 361 Gs
|
0.75 kg / 1.66 lbs
752 g / 7.4 N
|
4.51 kg / 9.94 lbs
~0 Gs
|
| 10 mm |
1.51 kg / 3.34 lbs
2 948 Gs
|
0.23 kg / 0.50 lbs
227 g / 2.2 N
|
1.36 kg / 3.01 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.37 lbs
978 Gs
|
0.02 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
116 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 12x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 12x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.55 km/h
(8.49 m/s)
|
0.18 J | |
| 30 mm |
52.51 km/h
(14.59 m/s)
|
0.54 J | |
| 50 mm |
67.79 km/h
(18.83 m/s)
|
0.90 J | |
| 100 mm |
95.87 km/h
(26.63 m/s)
|
1.81 J |
Tabela 9: Odporność na korozję
MW 12x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 12x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 024 Mx | 50.2 µWb |
| Współczynnik Pc | 0.59 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 12x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.60 kg | Standard |
| Woda (dno rzeki) |
5.27 kg
(+0.67 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.59
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) mają nowoczesny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której grubość sięga przynajmniej 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w warunkach ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Urazy ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Ryzyko uczulenia
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Trwała utrata siły
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Produkt nie dla dzieci
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Niszczenie danych
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Świadome użytkowanie
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Zagrożenie zapłonem
Pył generowany podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Uwaga medyczna
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
