MW 10x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010011
GTIN/EAN: 5906301810100
Średnica Ø
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
2.95 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.19 kg / 31.28 N
Indukcja magnetyczna
437.91 mT / 4379 Gs
Powłoka
[NiCuNi] nikiel
1.513 ZŁ z VAT / szt. + cena za transport
1.230 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
nasz formularz online
na naszej stronie.
Właściwości oraz budowę magnesu testujesz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 10x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010011 |
| GTIN/EAN | 5906301810100 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 2.95 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.19 kg / 31.28 N |
| Indukcja magnetyczna ~ ? | 437.91 mT / 4379 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt analizy matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4376 Gs
437.6 mT
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
mocny |
| 1 mm |
3547 Gs
354.7 mT
|
2.10 kg / 4.62 lbs
2095.9 g / 20.6 N
|
mocny |
| 2 mm |
2743 Gs
274.3 mT
|
1.25 kg / 2.76 lbs
1252.9 g / 12.3 N
|
słaby uchwyt |
| 3 mm |
2068 Gs
206.8 mT
|
0.71 kg / 1.57 lbs
712.2 g / 7.0 N
|
słaby uchwyt |
| 5 mm |
1161 Gs
116.1 mT
|
0.22 kg / 0.50 lbs
224.7 g / 2.2 N
|
słaby uchwyt |
| 10 mm |
336 Gs
33.6 mT
|
0.02 kg / 0.04 lbs
18.8 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
133 Gs
13.3 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MW 10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 2 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.96 kg / 2.11 lbs
957.0 g / 9.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| 1 mm |
|
0.80 kg / 1.76 lbs
797.5 g / 7.8 N
|
| 2 mm |
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
| 3 mm |
|
2.39 kg / 5.27 lbs
2392.5 g / 23.5 N
|
| 5 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 10 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 11 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 12 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
OK |
| 40 °C | -2.2% |
3.12 kg / 6.88 lbs
3119.8 g / 30.6 N
|
OK |
| 60 °C | -4.4% |
3.05 kg / 6.72 lbs
3049.6 g / 29.9 N
|
|
| 80 °C | -6.6% |
2.98 kg / 6.57 lbs
2979.5 g / 29.2 N
|
|
| 100 °C | -28.8% |
2.27 kg / 5.01 lbs
2271.3 g / 22.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.27 kg / 20.44 lbs
5 534 Gs
|
1.39 kg / 3.07 lbs
1391 g / 13.6 N
|
N/A |
| 1 mm |
7.63 kg / 16.83 lbs
7 941 Gs
|
1.15 kg / 2.52 lbs
1145 g / 11.2 N
|
6.87 kg / 15.15 lbs
~0 Gs
|
| 2 mm |
6.09 kg / 13.43 lbs
7 094 Gs
|
0.91 kg / 2.01 lbs
914 g / 9.0 N
|
5.48 kg / 12.09 lbs
~0 Gs
|
| 3 mm |
4.75 kg / 10.48 lbs
6 265 Gs
|
0.71 kg / 1.57 lbs
713 g / 7.0 N
|
4.28 kg / 9.43 lbs
~0 Gs
|
| 5 mm |
2.76 kg / 6.08 lbs
4 772 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.1 N
|
2.48 kg / 5.47 lbs
~0 Gs
|
| 10 mm |
0.65 kg / 1.44 lbs
2 323 Gs
|
0.10 kg / 0.22 lbs
98 g / 1.0 N
|
0.59 kg / 1.30 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.12 lbs
673 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
33.29 km/h
(9.25 m/s)
|
0.13 J | |
| 30 mm |
57.44 km/h
(15.96 m/s)
|
0.38 J | |
| 50 mm |
74.16 km/h
(20.60 m/s)
|
0.63 J | |
| 100 mm |
104.87 km/h
(29.13 m/s)
|
1.25 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 489 Mx | 34.9 µWb |
| Współczynnik Pc | 0.59 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.19 kg | Standard |
| Woda (dno rzeki) |
3.65 kg
(+0.46 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.59
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Dystans (pomiędzy magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka płyta nie przyjmuje całego pola, przez co część mocy jest tracona w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Bezpieczna praca przy magnesach neodymowych
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Reakcje alergiczne
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie życia
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.
Nie zbliżaj do komputera
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Moc przyciągania
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Uszkodzenia czujników
Uwaga: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Tylko dla dorosłych
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
