MW 10x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010011
GTIN/EAN: 5906301810100
Średnica Ø
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
2.95 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.19 kg / 31.28 N
Indukcja magnetyczna
437.91 mT / 4379 Gs
Powłoka
[NiCuNi] nikiel
1.513 ZŁ z VAT / szt. + cena za transport
1.230 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo skontaktuj się za pomocą
nasz formularz online
na stronie kontaktowej.
Parametry a także formę magnesu zobaczysz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MW 10x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010011 |
| GTIN/EAN | 5906301810100 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 2.95 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.19 kg / 31.28 N |
| Indukcja magnetyczna ~ ? | 437.91 mT / 4379 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Poniższe dane stanowią wynik analizy fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4376 Gs
437.6 mT
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
mocny |
| 1 mm |
3547 Gs
354.7 mT
|
2.10 kg / 4.62 lbs
2095.9 g / 20.6 N
|
mocny |
| 2 mm |
2743 Gs
274.3 mT
|
1.25 kg / 2.76 lbs
1252.9 g / 12.3 N
|
niskie ryzyko |
| 3 mm |
2068 Gs
206.8 mT
|
0.71 kg / 1.57 lbs
712.2 g / 7.0 N
|
niskie ryzyko |
| 5 mm |
1161 Gs
116.1 mT
|
0.22 kg / 0.50 lbs
224.7 g / 2.2 N
|
niskie ryzyko |
| 10 mm |
336 Gs
33.6 mT
|
0.02 kg / 0.04 lbs
18.8 g / 0.2 N
|
niskie ryzyko |
| 15 mm |
133 Gs
13.3 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 2 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.96 kg / 2.11 lbs
957.0 g / 9.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| 1 mm |
|
0.80 kg / 1.76 lbs
797.5 g / 7.8 N
|
| 2 mm |
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
| 3 mm |
|
2.39 kg / 5.27 lbs
2392.5 g / 23.5 N
|
| 5 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 10 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 11 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 12 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
OK |
| 40 °C | -2.2% |
3.12 kg / 6.88 lbs
3119.8 g / 30.6 N
|
OK |
| 60 °C | -4.4% |
3.05 kg / 6.72 lbs
3049.6 g / 29.9 N
|
|
| 80 °C | -6.6% |
2.98 kg / 6.57 lbs
2979.5 g / 29.2 N
|
|
| 100 °C | -28.8% |
2.27 kg / 5.01 lbs
2271.3 g / 22.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.27 kg / 20.44 lbs
5 534 Gs
|
1.39 kg / 3.07 lbs
1391 g / 13.6 N
|
N/A |
| 1 mm |
7.63 kg / 16.83 lbs
7 941 Gs
|
1.15 kg / 2.52 lbs
1145 g / 11.2 N
|
6.87 kg / 15.15 lbs
~0 Gs
|
| 2 mm |
6.09 kg / 13.43 lbs
7 094 Gs
|
0.91 kg / 2.01 lbs
914 g / 9.0 N
|
5.48 kg / 12.09 lbs
~0 Gs
|
| 3 mm |
4.75 kg / 10.48 lbs
6 265 Gs
|
0.71 kg / 1.57 lbs
713 g / 7.0 N
|
4.28 kg / 9.43 lbs
~0 Gs
|
| 5 mm |
2.76 kg / 6.08 lbs
4 772 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.1 N
|
2.48 kg / 5.47 lbs
~0 Gs
|
| 10 mm |
0.65 kg / 1.44 lbs
2 323 Gs
|
0.10 kg / 0.22 lbs
98 g / 1.0 N
|
0.59 kg / 1.30 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.12 lbs
673 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
33.29 km/h
(9.25 m/s)
|
0.13 J | |
| 30 mm |
57.44 km/h
(15.96 m/s)
|
0.38 J | |
| 50 mm |
74.16 km/h
(20.60 m/s)
|
0.63 J | |
| 100 mm |
104.87 km/h
(29.13 m/s)
|
1.25 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 489 Mx | 34.9 µWb |
| Współczynnik Pc | 0.59 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.19 kg | Standard |
| Woda (dno rzeki) |
3.65 kg
(+0.46 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.59
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Wady
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Praktyczny udźwig: czynniki wpływające
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Uwaga na odpryski
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zagrożenie zapłonem
Pył powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Tylko dla dorosłych
Te produkty magnetyczne to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Limity termiczne
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Zasady obsługi
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Uczulenie na powłokę
Pewna grupa użytkowników wykazuje nadwrażliwość na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać zaczerwienienie skóry. Sugerujemy używanie rękawiczek ochronnych.
Ryzyko złamań
Bloki magnetyczne mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.
Zagrożenie dla elektroniki
Ekstremalne oddziaływanie może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
