MW 10x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010010
GTIN/EAN: 5906301810094
Średnica Ø
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
2.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.80 kg / 27.42 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
1.021 ZŁ z VAT / szt. + cena za transport
0.830 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie daj znać korzystając z
formularz zapytania
w sekcji kontakt.
Moc i formę magnesu zobaczysz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MW 10x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010010 |
| GTIN/EAN | 5906301810094 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 2.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.80 kg / 27.42 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Poniższe informacje stanowią rezultat analizy inżynierskiej. Wartości bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3867 Gs
386.7 mT
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
średnie ryzyko |
| 1 mm |
3168 Gs
316.8 mT
|
1.88 kg / 4.14 lbs
1879.8 g / 18.4 N
|
niskie ryzyko |
| 2 mm |
2460 Gs
246.0 mT
|
1.13 kg / 2.50 lbs
1133.7 g / 11.1 N
|
niskie ryzyko |
| 3 mm |
1855 Gs
185.5 mT
|
0.64 kg / 1.42 lbs
644.6 g / 6.3 N
|
niskie ryzyko |
| 5 mm |
1036 Gs
103.6 mT
|
0.20 kg / 0.44 lbs
200.9 g / 2.0 N
|
niskie ryzyko |
| 10 mm |
293 Gs
29.3 mT
|
0.02 kg / 0.04 lbs
16.1 g / 0.2 N
|
niskie ryzyko |
| 15 mm |
114 Gs
11.4 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
55 Gs
5.5 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 0.50 lbs
226.0 g / 2.2 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 3.09 lbs
1400.0 g / 13.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 1 mm |
|
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 2 mm |
|
1.40 kg / 3.09 lbs
1400.0 g / 13.7 N
|
| 3 mm |
|
2.10 kg / 4.63 lbs
2100.0 g / 20.6 N
|
| 5 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
| 10 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
| 11 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
| 12 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
OK |
| 40 °C | -2.2% |
2.74 kg / 6.04 lbs
2738.4 g / 26.9 N
|
OK |
| 60 °C | -4.4% |
2.68 kg / 5.90 lbs
2676.8 g / 26.3 N
|
|
| 80 °C | -6.6% |
2.62 kg / 5.77 lbs
2615.2 g / 25.7 N
|
|
| 100 °C | -28.8% |
1.99 kg / 4.40 lbs
1993.6 g / 19.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 10x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
7.24 kg / 15.96 lbs
5 247 Gs
|
1.09 kg / 2.39 lbs
1086 g / 10.7 N
|
N/A |
| 1 mm |
6.04 kg / 13.31 lbs
7 061 Gs
|
0.91 kg / 2.00 lbs
905 g / 8.9 N
|
5.43 kg / 11.98 lbs
~0 Gs
|
| 2 mm |
4.86 kg / 10.71 lbs
6 336 Gs
|
0.73 kg / 1.61 lbs
729 g / 7.2 N
|
4.37 kg / 9.64 lbs
~0 Gs
|
| 3 mm |
3.81 kg / 8.41 lbs
5 612 Gs
|
0.57 kg / 1.26 lbs
572 g / 5.6 N
|
3.43 kg / 7.56 lbs
~0 Gs
|
| 5 mm |
2.22 kg / 4.90 lbs
4 283 Gs
|
0.33 kg / 0.73 lbs
333 g / 3.3 N
|
2.00 kg / 4.41 lbs
~0 Gs
|
| 10 mm |
0.52 kg / 1.15 lbs
2 071 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.09 lbs
587 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
61 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
37 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.86 km/h
(9.68 m/s)
|
0.11 J | |
| 30 mm |
60.17 km/h
(16.71 m/s)
|
0.33 J | |
| 50 mm |
77.68 km/h
(21.58 m/s)
|
0.55 J | |
| 100 mm |
109.85 km/h
(30.51 m/s)
|
1.10 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 142 Mx | 31.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.80 kg | Standard |
| Woda (dno rzeki) |
3.21 kg
(+0.41 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- z wykorzystaniem blachy ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (brak zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – za chuda płyta nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig określano z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy przy magnesach z neodymem
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie wybuchem pyłu
Pył powstający podczas obróbki magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Urządzenia elektroniczne
Bardzo silne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ryzyko połknięcia
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Dla uczulonych
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
