MW 10x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010008
GTIN: 5906301810070
Średnica Ø
10 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.15 kg / 21.04 N
Indukcja magnetyczna
318.70 mT / 3187 Gs
Powłoka
[NiCuNi] nikiel
0.726 ZŁ z VAT / szt. + cena za transport
0.590 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Dzwoń do nas
+48 22 499 98 98
lub pisz za pomocą
nasz formularz online
w sekcji kontakt.
Właściwości i formę magnesów testujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 10x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010008 |
| GTIN | 5906301810070 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.15 kg / 21.04 N |
| Indukcja magnetyczna ~ ? | 318.70 mT / 3187 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione wartości są rezultat kalkulacji fizycznej. Wyniki bazują na algorytmach dla klasy NdFeB. Realne warunki mogą się różnić. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
MW 10x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3185 Gs
318.5 mT
|
2.15 kg / 2150.0 g
21.1 N
|
średnie ryzyko |
| 1 mm |
2657 Gs
265.7 mT
|
1.50 kg / 1496.2 g
14.7 N
|
bezpieczny |
| 2 mm |
2081 Gs
208.1 mT
|
0.92 kg / 918.1 g
9.0 N
|
bezpieczny |
| 3 mm |
1573 Gs
157.3 mT
|
0.52 kg / 524.4 g
5.1 N
|
bezpieczny |
| 5 mm |
874 Gs
87.4 mT
|
0.16 kg / 161.7 g
1.6 N
|
bezpieczny |
| 10 mm |
241 Gs
24.1 mT
|
0.01 kg / 12.3 g
0.1 N
|
bezpieczny |
| 15 mm |
92 Gs
9.2 mT
|
0.00 kg / 1.8 g
0.0 N
|
bezpieczny |
| 20 mm |
44 Gs
4.4 mT
|
0.00 kg / 0.4 g
0.0 N
|
bezpieczny |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 10x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.43 kg / 430.0 g
4.2 N
|
| 1 mm | Stal (~0.2) |
0.30 kg / 300.0 g
2.9 N
|
| 2 mm | Stal (~0.2) |
0.18 kg / 184.0 g
1.8 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.64 kg / 645.0 g
6.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.43 kg / 430.0 g
4.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 215.0 g
2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.08 kg / 1075.0 g
10.5 N
|
MW 10x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 215.0 g
2.1 N
|
| 1 mm |
|
0.54 kg / 537.5 g
5.3 N
|
| 2 mm |
|
1.08 kg / 1075.0 g
10.5 N
|
| 5 mm |
|
2.15 kg / 2150.0 g
21.1 N
|
| 10 mm |
|
2.15 kg / 2150.0 g
21.1 N
|
MW 10x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.15 kg / 2150.0 g
21.1 N
|
OK |
| 40 °C | -2.2% |
2.10 kg / 2102.7 g
20.6 N
|
OK |
| 60 °C | -4.4% |
2.06 kg / 2055.4 g
20.2 N
|
|
| 80 °C | -6.6% |
2.01 kg / 2008.1 g
19.7 N
|
|
| 100 °C | -28.8% |
1.53 kg / 1530.8 g
15.0 N
|
MW 10x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.91 kg / 4913 g
48.2 N
4 754 Gs
|
N/A |
| 1 mm |
4.18 kg / 4181 g
41.0 N
5 877 Gs
|
3.76 kg / 3763 g
36.9 N
~0 Gs
|
| 2 mm |
3.42 kg / 3419 g
33.5 N
5 314 Gs
|
3.08 kg / 3077 g
30.2 N
~0 Gs
|
| 3 mm |
2.71 kg / 2711 g
26.6 N
4 732 Gs
|
2.44 kg / 2440 g
23.9 N
~0 Gs
|
| 5 mm |
1.59 kg / 1595 g
15.6 N
3 630 Gs
|
1.44 kg / 1435 g
14.1 N
~0 Gs
|
| 10 mm |
0.37 kg / 369 g
3.6 N
1 747 Gs
|
0.33 kg / 333 g
3.3 N
~0 Gs
|
| 20 mm |
0.03 kg / 28 g
0.3 N
483 Gs
|
0.03 kg / 25 g
0.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
48 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 10x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
35.27 km/h
(9.80 m/s)
|
0.08 J | |
| 30 mm |
60.88 km/h
(16.91 m/s)
|
0.25 J | |
| 50 mm |
78.60 km/h
(21.83 m/s)
|
0.42 J | |
| 100 mm |
111.15 km/h
(30.88 m/s)
|
0.84 J |
MW 10x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 694 Mx | 26.9 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
MW 10x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.15 kg | Standard |
| Woda (dno rzeki) |
2.46 kg
(+0.31 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne produkty
Zalety oraz wady magnesów neodymowych NdFeB.
Oprócz imponującą siłą, te produkty wnoszą dodatkowe korzyści::
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
Siła trzymania 2.15 kg jest wynikiem testu laboratoryjnego przeprowadzonego w specyficznych, idealnych warunkach:
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
Trzeba mieć na uwadze, że udźwig roboczy może być niższe w zależności od następujących czynników, zaczynając od najistotniejszych:
- Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
* Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Zalety oraz wady magnesów neodymowych NdFeB.
Oprócz imponującą siłą, te produkty wnoszą dodatkowe korzyści::
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
Siła trzymania 2.15 kg jest wynikiem testu laboratoryjnego przeprowadzonego w specyficznych, idealnych warunkach:
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
Trzeba mieć na uwadze, że udźwig roboczy może być niższe w zależności od następujących czynników, zaczynając od najistotniejszych:
- Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
* Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ostrzeżenie dla alergików
Część populacji wykazuje alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może wywołać silną reakcję alergiczną. Wskazane jest stosowanie rękawiczek ochronnych.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Chronić przed dziećmi
Neodymowe magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Trwała utrata siły
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Implanty medyczne
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Ryzyko złamań
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Zagrożenie!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
