MPL 45x25x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020164
GTIN/EAN: 5906301811701
Długość
45 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
84.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
28.48 kg / 279.40 N
Indukcja magnetyczna
306.29 mT / 3063 Gs
Powłoka
[NiCuNi] nikiel
35.01 ZŁ z VAT / szt. + cena za transport
28.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
lub pisz korzystając z
formularz kontaktowy
na stronie kontaktowej.
Parametry i budowę elementów magnetycznych sprawdzisz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MPL 45x25x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 45x25x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020164 |
| GTIN/EAN | 5906301811701 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 45 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 84.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 28.48 kg / 279.40 N |
| Indukcja magnetyczna ~ ? | 306.29 mT / 3063 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Poniższe wartości stanowią rezultat kalkulacji inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 45x25x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3062 Gs
306.2 mT
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
miażdżący |
| 1 mm |
2918 Gs
291.8 mT
|
25.86 kg / 57.00 lbs
25856.7 g / 253.7 N
|
miażdżący |
| 2 mm |
2760 Gs
276.0 mT
|
23.13 kg / 51.00 lbs
23133.2 g / 226.9 N
|
miażdżący |
| 3 mm |
2595 Gs
259.5 mT
|
20.45 kg / 45.08 lbs
20449.5 g / 200.6 N
|
miażdżący |
| 5 mm |
2261 Gs
226.1 mT
|
15.53 kg / 34.23 lbs
15525.8 g / 152.3 N
|
miażdżący |
| 10 mm |
1529 Gs
152.9 mT
|
7.10 kg / 15.64 lbs
7096.1 g / 69.6 N
|
mocny |
| 15 mm |
1018 Gs
101.8 mT
|
3.15 kg / 6.94 lbs
3147.4 g / 30.9 N
|
mocny |
| 20 mm |
688 Gs
68.8 mT
|
1.44 kg / 3.17 lbs
1439.4 g / 14.1 N
|
niskie ryzyko |
| 30 mm |
340 Gs
34.0 mT
|
0.35 kg / 0.77 lbs
350.8 g / 3.4 N
|
niskie ryzyko |
| 50 mm |
111 Gs
11.1 mT
|
0.04 kg / 0.08 lbs
37.1 g / 0.4 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 45x25x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.70 kg / 12.56 lbs
5696.0 g / 55.9 N
|
| 1 mm | Stal (~0.2) |
5.17 kg / 11.40 lbs
5172.0 g / 50.7 N
|
| 2 mm | Stal (~0.2) |
4.63 kg / 10.20 lbs
4626.0 g / 45.4 N
|
| 3 mm | Stal (~0.2) |
4.09 kg / 9.02 lbs
4090.0 g / 40.1 N
|
| 5 mm | Stal (~0.2) |
3.11 kg / 6.85 lbs
3106.0 g / 30.5 N
|
| 10 mm | Stal (~0.2) |
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
|
| 15 mm | Stal (~0.2) |
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 20 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 45x25x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.54 kg / 18.84 lbs
8544.0 g / 83.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.70 kg / 12.56 lbs
5696.0 g / 55.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.85 kg / 6.28 lbs
2848.0 g / 27.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
14.24 kg / 31.39 lbs
14240.0 g / 139.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 45x25x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.42 kg / 3.14 lbs
1424.0 g / 14.0 N
|
| 1 mm |
|
3.56 kg / 7.85 lbs
3560.0 g / 34.9 N
|
| 2 mm |
|
7.12 kg / 15.70 lbs
7120.0 g / 69.8 N
|
| 3 mm |
|
10.68 kg / 23.55 lbs
10680.0 g / 104.8 N
|
| 5 mm |
|
17.80 kg / 39.24 lbs
17800.0 g / 174.6 N
|
| 10 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
| 11 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
| 12 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 45x25x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
OK |
| 40 °C | -2.2% |
27.85 kg / 61.41 lbs
27853.4 g / 273.2 N
|
OK |
| 60 °C | -4.4% |
27.23 kg / 60.02 lbs
27226.9 g / 267.1 N
|
|
| 80 °C | -6.6% |
26.60 kg / 58.64 lbs
26600.3 g / 260.9 N
|
|
| 100 °C | -28.8% |
20.28 kg / 44.70 lbs
20277.8 g / 198.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 45x25x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
65.04 kg / 143.40 lbs
4 590 Gs
|
9.76 kg / 21.51 lbs
9757 g / 95.7 N
|
N/A |
| 1 mm |
62.12 kg / 136.95 lbs
5 985 Gs
|
9.32 kg / 20.54 lbs
9318 g / 91.4 N
|
55.91 kg / 123.25 lbs
~0 Gs
|
| 2 mm |
59.05 kg / 130.19 lbs
5 836 Gs
|
8.86 kg / 19.53 lbs
8858 g / 86.9 N
|
53.15 kg / 117.17 lbs
~0 Gs
|
| 3 mm |
55.95 kg / 123.34 lbs
5 680 Gs
|
8.39 kg / 18.50 lbs
8392 g / 82.3 N
|
50.35 kg / 111.01 lbs
~0 Gs
|
| 5 mm |
49.74 kg / 109.66 lbs
5 356 Gs
|
7.46 kg / 16.45 lbs
7461 g / 73.2 N
|
44.77 kg / 98.70 lbs
~0 Gs
|
| 10 mm |
35.46 kg / 78.17 lbs
4 522 Gs
|
5.32 kg / 11.73 lbs
5319 g / 52.2 N
|
31.91 kg / 70.36 lbs
~0 Gs
|
| 20 mm |
16.21 kg / 35.73 lbs
3 057 Gs
|
2.43 kg / 5.36 lbs
2431 g / 23.8 N
|
14.59 kg / 32.16 lbs
~0 Gs
|
| 50 mm |
1.58 kg / 3.48 lbs
955 Gs
|
0.24 kg / 0.52 lbs
237 g / 2.3 N
|
1.42 kg / 3.14 lbs
~0 Gs
|
| 60 mm |
0.80 kg / 1.77 lbs
680 Gs
|
0.12 kg / 0.26 lbs
120 g / 1.2 N
|
0.72 kg / 1.59 lbs
~0 Gs
|
| 70 mm |
0.43 kg / 0.94 lbs
497 Gs
|
0.06 kg / 0.14 lbs
64 g / 0.6 N
|
0.38 kg / 0.85 lbs
~0 Gs
|
| 80 mm |
0.24 kg / 0.53 lbs
372 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.47 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.31 lbs
284 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 100 mm |
0.08 kg / 0.19 lbs
221 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 45x25x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 45x25x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.22 km/h
(5.89 m/s)
|
1.47 J | |
| 30 mm |
32.34 km/h
(8.98 m/s)
|
3.40 J | |
| 50 mm |
41.46 km/h
(11.52 m/s)
|
5.60 J | |
| 100 mm |
58.59 km/h
(16.28 m/s)
|
11.18 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 45x25x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 45x25x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 35 829 Mx | 358.3 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 45x25x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 28.48 kg | Standard |
| Woda (dno rzeki) |
32.61 kg
(+4.13 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z użyciem blachy ze miękkiej stali, działającej jako zwora magnetyczna
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (między magnesem a metalem), bowiem nawet niewielka odległość (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Pole magnetyczne a elektronika
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Tylko dla dorosłych
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Samozapłon
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Potężne pole
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Przegrzanie magnesu
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Reakcje alergiczne
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
