MPL 40x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020162
GTIN/EAN: 5906301811688
Długość
40 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.14 kg / 70.02 N
Indukcja magnetyczna
284.46 mT / 2845 Gs
Powłoka
[NiCuNi] nikiel
2.79 ZŁ z VAT / szt. + cena za transport
2.27 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Siłę a także budowę magnesów skontrolujesz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane produktu - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020162 |
| GTIN/EAN | 5906301811688 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.14 kg / 70.02 N |
| Indukcja magnetyczna ~ ? | 284.46 mT / 2845 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Poniższe dane stanowią rezultat kalkulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MPL 40x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2843 Gs
284.3 mT
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
mocny |
| 1 mm |
2314 Gs
231.4 mT
|
4.73 kg / 10.43 lbs
4729.9 g / 46.4 N
|
mocny |
| 2 mm |
1788 Gs
178.8 mT
|
2.83 kg / 6.23 lbs
2825.3 g / 27.7 N
|
mocny |
| 3 mm |
1365 Gs
136.5 mT
|
1.65 kg / 3.63 lbs
1645.1 g / 16.1 N
|
słaby uchwyt |
| 5 mm |
824 Gs
82.4 mT
|
0.60 kg / 1.32 lbs
599.2 g / 5.9 N
|
słaby uchwyt |
| 10 mm |
317 Gs
31.7 mT
|
0.09 kg / 0.20 lbs
88.6 g / 0.9 N
|
słaby uchwyt |
| 15 mm |
160 Gs
16.0 mT
|
0.02 kg / 0.05 lbs
22.5 g / 0.2 N
|
słaby uchwyt |
| 20 mm |
92 Gs
9.2 mT
|
0.01 kg / 0.02 lbs
7.5 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 40x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| 1 mm | Stal (~0.2) |
0.95 kg / 2.09 lbs
946.0 g / 9.3 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
566.0 g / 5.6 N
|
| 3 mm | Stal (~0.2) |
0.33 kg / 0.73 lbs
330.0 g / 3.2 N
|
| 5 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 40x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.14 kg / 4.72 lbs
2142.0 g / 21.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.71 kg / 1.57 lbs
714.0 g / 7.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.57 kg / 7.87 lbs
3570.0 g / 35.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 1.57 lbs
714.0 g / 7.0 N
|
| 1 mm |
|
1.79 kg / 3.94 lbs
1785.0 g / 17.5 N
|
| 2 mm |
|
3.57 kg / 7.87 lbs
3570.0 g / 35.0 N
|
| 3 mm |
|
5.35 kg / 11.81 lbs
5355.0 g / 52.5 N
|
| 5 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 10 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 11 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 12 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 40x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
OK |
| 40 °C | -2.2% |
6.98 kg / 15.39 lbs
6982.9 g / 68.5 N
|
OK |
| 60 °C | -4.4% |
6.83 kg / 15.05 lbs
6825.8 g / 67.0 N
|
|
| 80 °C | -6.6% |
6.67 kg / 14.70 lbs
6668.8 g / 65.4 N
|
|
| 100 °C | -28.8% |
5.08 kg / 11.21 lbs
5083.7 g / 49.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 40x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.95 kg / 30.75 lbs
4 204 Gs
|
2.09 kg / 4.61 lbs
2092 g / 20.5 N
|
N/A |
| 1 mm |
11.58 kg / 25.53 lbs
5 180 Gs
|
1.74 kg / 3.83 lbs
1737 g / 17.0 N
|
10.42 kg / 22.98 lbs
~0 Gs
|
| 2 mm |
9.24 kg / 20.37 lbs
4 628 Gs
|
1.39 kg / 3.06 lbs
1386 g / 13.6 N
|
8.32 kg / 18.34 lbs
~0 Gs
|
| 3 mm |
7.19 kg / 15.86 lbs
4 083 Gs
|
1.08 kg / 2.38 lbs
1079 g / 10.6 N
|
6.47 kg / 14.27 lbs
~0 Gs
|
| 5 mm |
4.21 kg / 9.28 lbs
3 124 Gs
|
0.63 kg / 1.39 lbs
632 g / 6.2 N
|
3.79 kg / 8.36 lbs
~0 Gs
|
| 10 mm |
1.17 kg / 2.58 lbs
1 647 Gs
|
0.18 kg / 0.39 lbs
176 g / 1.7 N
|
1.05 kg / 2.32 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.38 lbs
633 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.16 kg / 0.34 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
115 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 40x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.21 km/h
(9.50 m/s)
|
0.28 J | |
| 30 mm |
58.81 km/h
(16.34 m/s)
|
0.84 J | |
| 50 mm |
75.92 km/h
(21.09 m/s)
|
1.40 J | |
| 100 mm |
107.36 km/h
(29.82 m/s)
|
2.80 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 40x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 40x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 379 Mx | 63.8 µWb |
| Współczynnik Pc | 0.24 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.14 kg | Standard |
| Woda (dno rzeki) |
8.18 kg
(+1.04 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy użyciu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez farby)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet bardzo mała przerwa (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka przyciąga najlepiej. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig mierzono używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
BHP przy magnesach
Siła zgniatająca
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.
Unikaj kontaktu w przypadku alergii
Pewna grupa użytkowników ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może powodować wysypkę. Sugerujemy stosowanie rękawic bezlateksowych.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Ostrożność wymagana
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Smartfony i tablety
Ważna informacja: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Tylko dla dorosłych
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
