MPL 40x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020162
GTIN/EAN: 5906301811688
Długość
40 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.14 kg / 70.02 N
Indukcja magnetyczna
284.46 mT / 2845 Gs
Powłoka
[NiCuNi] nikiel
2.79 ZŁ z VAT / szt. + cena za transport
2.27 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość za pomocą
nasz formularz online
przez naszą stronę.
Właściwości a także wygląd magnesu zweryfikujesz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020162 |
| GTIN/EAN | 5906301811688 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.14 kg / 70.02 N |
| Indukcja magnetyczna ~ ? | 284.46 mT / 2845 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią wynik kalkulacji matematycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 40x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2843 Gs
284.3 mT
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
mocny |
| 1 mm |
2314 Gs
231.4 mT
|
4.73 kg / 10.43 lbs
4729.9 g / 46.4 N
|
mocny |
| 2 mm |
1788 Gs
178.8 mT
|
2.83 kg / 6.23 lbs
2825.3 g / 27.7 N
|
mocny |
| 3 mm |
1365 Gs
136.5 mT
|
1.65 kg / 3.63 lbs
1645.1 g / 16.1 N
|
słaby uchwyt |
| 5 mm |
824 Gs
82.4 mT
|
0.60 kg / 1.32 lbs
599.2 g / 5.9 N
|
słaby uchwyt |
| 10 mm |
317 Gs
31.7 mT
|
0.09 kg / 0.20 lbs
88.6 g / 0.9 N
|
słaby uchwyt |
| 15 mm |
160 Gs
16.0 mT
|
0.02 kg / 0.05 lbs
22.5 g / 0.2 N
|
słaby uchwyt |
| 20 mm |
92 Gs
9.2 mT
|
0.01 kg / 0.02 lbs
7.5 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 40x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| 1 mm | Stal (~0.2) |
0.95 kg / 2.09 lbs
946.0 g / 9.3 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
566.0 g / 5.6 N
|
| 3 mm | Stal (~0.2) |
0.33 kg / 0.73 lbs
330.0 g / 3.2 N
|
| 5 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 40x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.14 kg / 4.72 lbs
2142.0 g / 21.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.71 kg / 1.57 lbs
714.0 g / 7.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.57 kg / 7.87 lbs
3570.0 g / 35.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 40x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 1.57 lbs
714.0 g / 7.0 N
|
| 1 mm |
|
1.79 kg / 3.94 lbs
1785.0 g / 17.5 N
|
| 2 mm |
|
3.57 kg / 7.87 lbs
3570.0 g / 35.0 N
|
| 3 mm |
|
5.35 kg / 11.81 lbs
5355.0 g / 52.5 N
|
| 5 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 10 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 11 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
| 12 mm |
|
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 40x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.14 kg / 15.74 lbs
7140.0 g / 70.0 N
|
OK |
| 40 °C | -2.2% |
6.98 kg / 15.39 lbs
6982.9 g / 68.5 N
|
OK |
| 60 °C | -4.4% |
6.83 kg / 15.05 lbs
6825.8 g / 67.0 N
|
|
| 80 °C | -6.6% |
6.67 kg / 14.70 lbs
6668.8 g / 65.4 N
|
|
| 100 °C | -28.8% |
5.08 kg / 11.21 lbs
5083.7 g / 49.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 40x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.95 kg / 30.75 lbs
4 204 Gs
|
2.09 kg / 4.61 lbs
2092 g / 20.5 N
|
N/A |
| 1 mm |
11.58 kg / 25.53 lbs
5 180 Gs
|
1.74 kg / 3.83 lbs
1737 g / 17.0 N
|
10.42 kg / 22.98 lbs
~0 Gs
|
| 2 mm |
9.24 kg / 20.37 lbs
4 628 Gs
|
1.39 kg / 3.06 lbs
1386 g / 13.6 N
|
8.32 kg / 18.34 lbs
~0 Gs
|
| 3 mm |
7.19 kg / 15.86 lbs
4 083 Gs
|
1.08 kg / 2.38 lbs
1079 g / 10.6 N
|
6.47 kg / 14.27 lbs
~0 Gs
|
| 5 mm |
4.21 kg / 9.28 lbs
3 124 Gs
|
0.63 kg / 1.39 lbs
632 g / 6.2 N
|
3.79 kg / 8.36 lbs
~0 Gs
|
| 10 mm |
1.17 kg / 2.58 lbs
1 647 Gs
|
0.18 kg / 0.39 lbs
176 g / 1.7 N
|
1.05 kg / 2.32 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.38 lbs
633 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.16 kg / 0.34 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
115 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 40x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 40x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.21 km/h
(9.50 m/s)
|
0.28 J | |
| 30 mm |
58.81 km/h
(16.34 m/s)
|
0.84 J | |
| 50 mm |
75.92 km/h
(21.09 m/s)
|
1.40 J | |
| 100 mm |
107.36 km/h
(29.82 m/s)
|
2.80 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 40x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 379 Mx | 63.8 µWb |
| Współczynnik Pc | 0.24 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.14 kg | Standard |
| Woda (dno rzeki) |
8.18 kg
(+1.04 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi jedynie ~1% (wg testów).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, Au, Ag) zyskują nowoczesny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z zastosowaniem podłoża ze miękkiej stali, działającej jako element zamykający obwód
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (bez powłok)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig określano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza udźwig.
Bezpieczna praca przy magnesach neodymowych
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Uwaga medyczna
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Smartfony i tablety
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Uszkodzenia ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Ogromna siła
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Reakcje alergiczne
Część populacji wykazuje uczulenie na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Sugerujemy stosowanie rękawiczek ochronnych.
Trwała utrata siły
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
