MPL 40x15x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020155
GTIN/EAN: 5906301811619
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
27 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.21 kg / 139.45 N
Indukcja magnetyczna
286.36 mT / 2864 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Zadzwoń i zapytaj
+48 888 99 98 98
albo napisz poprzez
formularz
przez naszą stronę.
Parametry i wygląd magnesu neodymowego skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 40x15x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 40x15x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020155 |
| GTIN/EAN | 5906301811619 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.21 kg / 139.45 N |
| Indukcja magnetyczna ~ ? | 286.36 mT / 2864 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe wartości są rezultat analizy matematycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MPL 40x15x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2863 Gs
286.3 mT
|
14.21 kg / 14210.0 g
139.4 N
|
niebezpieczny! |
| 1 mm |
2635 Gs
263.5 mT
|
12.04 kg / 12041.8 g
118.1 N
|
niebezpieczny! |
| 2 mm |
2385 Gs
238.5 mT
|
9.86 kg / 9859.1 g
96.7 N
|
mocny |
| 3 mm |
2132 Gs
213.2 mT
|
7.88 kg / 7880.1 g
77.3 N
|
mocny |
| 5 mm |
1670 Gs
167.0 mT
|
4.84 kg / 4837.1 g
47.5 N
|
mocny |
| 10 mm |
903 Gs
90.3 mT
|
1.41 kg / 1412.2 g
13.9 N
|
bezpieczny |
| 15 mm |
520 Gs
52.0 mT
|
0.47 kg / 469.2 g
4.6 N
|
bezpieczny |
| 20 mm |
320 Gs
32.0 mT
|
0.18 kg / 177.7 g
1.7 N
|
bezpieczny |
| 30 mm |
141 Gs
14.1 mT
|
0.03 kg / 34.5 g
0.3 N
|
bezpieczny |
| 50 mm |
41 Gs
4.1 mT
|
0.00 kg / 3.0 g
0.0 N
|
bezpieczny |
MPL 40x15x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.84 kg / 2842.0 g
27.9 N
|
| 1 mm | Stal (~0.2) |
2.41 kg / 2408.0 g
23.6 N
|
| 2 mm | Stal (~0.2) |
1.97 kg / 1972.0 g
19.3 N
|
| 3 mm | Stal (~0.2) |
1.58 kg / 1576.0 g
15.5 N
|
| 5 mm | Stal (~0.2) |
0.97 kg / 968.0 g
9.5 N
|
| 10 mm | Stal (~0.2) |
0.28 kg / 282.0 g
2.8 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 94.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 40x15x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.26 kg / 4263.0 g
41.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.84 kg / 2842.0 g
27.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.42 kg / 1421.0 g
13.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.11 kg / 7105.0 g
69.7 N
|
MPL 40x15x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 710.5 g
7.0 N
|
| 1 mm |
|
1.78 kg / 1776.3 g
17.4 N
|
| 2 mm |
|
3.55 kg / 3552.5 g
34.9 N
|
| 5 mm |
|
8.88 kg / 8881.3 g
87.1 N
|
| 10 mm |
|
14.21 kg / 14210.0 g
139.4 N
|
MPL 40x15x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.21 kg / 14210.0 g
139.4 N
|
OK |
| 40 °C | -2.2% |
13.90 kg / 13897.4 g
136.3 N
|
OK |
| 60 °C | -4.4% |
13.58 kg / 13584.8 g
133.3 N
|
|
| 80 °C | -6.6% |
13.27 kg / 13272.1 g
130.2 N
|
|
| 100 °C | -28.8% |
10.12 kg / 10117.5 g
99.3 N
|
MPL 40x15x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
30.32 kg / 30316 g
297.4 N
4 334 Gs
|
N/A |
| 1 mm |
28.06 kg / 28059 g
275.3 N
5 508 Gs
|
25.25 kg / 25253 g
247.7 N
~0 Gs
|
| 2 mm |
25.69 kg / 25691 g
252.0 N
5 271 Gs
|
23.12 kg / 23122 g
226.8 N
~0 Gs
|
| 3 mm |
23.33 kg / 23329 g
228.9 N
5 023 Gs
|
21.00 kg / 20996 g
206.0 N
~0 Gs
|
| 5 mm |
18.85 kg / 18851 g
184.9 N
4 515 Gs
|
16.97 kg / 16966 g
166.4 N
~0 Gs
|
| 10 mm |
10.32 kg / 10320 g
101.2 N
3 341 Gs
|
9.29 kg / 9288 g
91.1 N
~0 Gs
|
| 20 mm |
3.01 kg / 3013 g
29.6 N
1 805 Gs
|
2.71 kg / 2712 g
26.6 N
~0 Gs
|
| 50 mm |
0.16 kg / 160 g
1.6 N
416 Gs
|
0.14 kg / 144 g
1.4 N
~0 Gs
|
MPL 40x15x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 40x15x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.53 km/h
(6.81 m/s)
|
0.63 J | |
| 30 mm |
40.13 km/h
(11.15 m/s)
|
1.68 J | |
| 50 mm |
51.74 km/h
(14.37 m/s)
|
2.79 J | |
| 100 mm |
73.16 km/h
(20.32 m/s)
|
5.58 J |
MPL 40x15x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 40x15x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 905 Mx | 169.0 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
MPL 40x15x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.21 kg | Standard |
| Woda (dno rzeki) |
16.27 kg
(+2.06 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (NiCuNi, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Najwyższa nośność magnesu – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- o grubości przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Co wpływa na udźwig w praktyce
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda płyta nie zamyka strumienia, przez co część strumienia ucieka w powietrzu.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Ogromna siła
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Magnesy są kruche
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Implanty kardiologiczne
Pacjenci z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.
Unikaj kontaktu w przypadku alergii
Część populacji posiada uczulenie na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może skutkować silną reakcję alergiczną. Wskazane jest noszenie rękawiczek ochronnych.
Niebezpieczeństwo przytrzaśnięcia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Tylko dla dorosłych
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Wrażliwość na ciepło
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
