MPL 40x15x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020155
GTIN/EAN: 5906301811619
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
27 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.21 kg / 139.45 N
Indukcja magnetyczna
286.36 mT / 2864 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Parametry a także formę magnesu neodymowego zobaczysz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry produktu - MPL 40x15x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x15x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020155 |
| GTIN/EAN | 5906301811619 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.21 kg / 139.45 N |
| Indukcja magnetyczna ~ ? | 286.36 mT / 2864 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Poniższe wartości są wynik analizy fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MPL 40x15x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2863 Gs
286.3 mT
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
krytyczny poziom |
| 1 mm |
2635 Gs
263.5 mT
|
12.04 kg / 26.55 lbs
12041.8 g / 118.1 N
|
krytyczny poziom |
| 2 mm |
2385 Gs
238.5 mT
|
9.86 kg / 21.74 lbs
9859.1 g / 96.7 N
|
średnie ryzyko |
| 3 mm |
2132 Gs
213.2 mT
|
7.88 kg / 17.37 lbs
7880.1 g / 77.3 N
|
średnie ryzyko |
| 5 mm |
1670 Gs
167.0 mT
|
4.84 kg / 10.66 lbs
4837.1 g / 47.5 N
|
średnie ryzyko |
| 10 mm |
903 Gs
90.3 mT
|
1.41 kg / 3.11 lbs
1412.2 g / 13.9 N
|
bezpieczny |
| 15 mm |
520 Gs
52.0 mT
|
0.47 kg / 1.03 lbs
469.2 g / 4.6 N
|
bezpieczny |
| 20 mm |
320 Gs
32.0 mT
|
0.18 kg / 0.39 lbs
177.7 g / 1.7 N
|
bezpieczny |
| 30 mm |
141 Gs
14.1 mT
|
0.03 kg / 0.08 lbs
34.5 g / 0.3 N
|
bezpieczny |
| 50 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 40x15x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
|
| 1 mm | Stal (~0.2) |
2.41 kg / 5.31 lbs
2408.0 g / 23.6 N
|
| 2 mm | Stal (~0.2) |
1.97 kg / 4.35 lbs
1972.0 g / 19.3 N
|
| 3 mm | Stal (~0.2) |
1.58 kg / 3.47 lbs
1576.0 g / 15.5 N
|
| 5 mm | Stal (~0.2) |
0.97 kg / 2.13 lbs
968.0 g / 9.5 N
|
| 10 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.21 lbs
94.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 40x15x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.26 kg / 9.40 lbs
4263.0 g / 41.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.42 kg / 3.13 lbs
1421.0 g / 13.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.11 kg / 15.66 lbs
7105.0 g / 69.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 40x15x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 1.57 lbs
710.5 g / 7.0 N
|
| 1 mm |
|
1.78 kg / 3.92 lbs
1776.3 g / 17.4 N
|
| 2 mm |
|
3.55 kg / 7.83 lbs
3552.5 g / 34.9 N
|
| 3 mm |
|
5.33 kg / 11.75 lbs
5328.8 g / 52.3 N
|
| 5 mm |
|
8.88 kg / 19.58 lbs
8881.3 g / 87.1 N
|
| 10 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
| 11 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
| 12 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 40x15x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
OK |
| 40 °C | -2.2% |
13.90 kg / 30.64 lbs
13897.4 g / 136.3 N
|
OK |
| 60 °C | -4.4% |
13.58 kg / 29.95 lbs
13584.8 g / 133.3 N
|
|
| 80 °C | -6.6% |
13.27 kg / 29.26 lbs
13272.1 g / 130.2 N
|
|
| 100 °C | -28.8% |
10.12 kg / 22.31 lbs
10117.5 g / 99.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 40x15x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
30.32 kg / 66.84 lbs
4 334 Gs
|
4.55 kg / 10.03 lbs
4547 g / 44.6 N
|
N/A |
| 1 mm |
28.06 kg / 61.86 lbs
5 508 Gs
|
4.21 kg / 9.28 lbs
4209 g / 41.3 N
|
25.25 kg / 55.67 lbs
~0 Gs
|
| 2 mm |
25.69 kg / 56.64 lbs
5 271 Gs
|
3.85 kg / 8.50 lbs
3854 g / 37.8 N
|
23.12 kg / 50.97 lbs
~0 Gs
|
| 3 mm |
23.33 kg / 51.43 lbs
5 023 Gs
|
3.50 kg / 7.71 lbs
3499 g / 34.3 N
|
21.00 kg / 46.29 lbs
~0 Gs
|
| 5 mm |
18.85 kg / 41.56 lbs
4 515 Gs
|
2.83 kg / 6.23 lbs
2828 g / 27.7 N
|
16.97 kg / 37.40 lbs
~0 Gs
|
| 10 mm |
10.32 kg / 22.75 lbs
3 341 Gs
|
1.55 kg / 3.41 lbs
1548 g / 15.2 N
|
9.29 kg / 20.48 lbs
~0 Gs
|
| 20 mm |
3.01 kg / 6.64 lbs
1 805 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.98 lbs
~0 Gs
|
| 50 mm |
0.16 kg / 0.35 lbs
416 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.32 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.16 lbs
282 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.08 lbs
199 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
144 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
108 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.01 lbs
83 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 40x15x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x15x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.53 km/h
(6.81 m/s)
|
0.63 J | |
| 30 mm |
40.13 km/h
(11.15 m/s)
|
1.68 J | |
| 50 mm |
51.74 km/h
(14.37 m/s)
|
2.79 J | |
| 100 mm |
73.16 km/h
(20.32 m/s)
|
5.58 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x15x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 40x15x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 905 Mx | 169.0 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x15x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.21 kg | Standard |
| Woda (dno rzeki) |
16.27 kg
(+2.06 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi jedynie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Maksymalny udźwig magnesu – od czego zależy?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- o przekroju nie mniejszej niż 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig określano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Samozapłon
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Alergia na nikiel
Część populacji posiada alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Wskazane jest noszenie rękawiczek ochronnych.
Świadome użytkowanie
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Smartfony i tablety
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Ochrona urządzeń
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
