Magnesy neodymowe – najsilniejsze na rynku

Potrzebujesz niezawodnego pola magnetycznego? Mamy w ofercie kompleksowy asortyment magnesów o różnych kształtach i wymiarach. To najlepszy wybór do użytku w domu, warsztatu oraz modelarstwa. Przejrzyj asortyment dostępne od ręki.

sprawdź cennik i wymiary

Magnesy do eksploracji dna

Odkryj pasję z wyławianiem skarbów! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w rzekach i jeziorach.

znajdź zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Profesjonalne rozwiązania do mocowania bez wiercenia. Mocowania gwintowane (M8, M10, M12) gwarantują szybkie usprawnienie pracy na magazynach. Idealnie nadają się przy instalacji lamp, czujników oraz banerów.

sprawdź parametry techniczne

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 40x15x6 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020155

GTIN/EAN: 5906301811619

5.00

Długość

40 mm [±0,1 mm]

Szerokość

15 mm [±0,1 mm]

Wysokość

6 mm [±0,1 mm]

Waga

27 g

Kierunek magnesowania

↑ osiowy

Udźwig

14.21 kg / 139.45 N

Indukcja magnetyczna

286.36 mT / 2864 Gs

Powłoka

[NiCuNi] nikiel

18.45 z VAT / szt. + cena za transport

15.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
15.00 ZŁ
18.45 ZŁ
cena od 40 szt.
14.10 ZŁ
17.34 ZŁ
cena od 170 szt.
13.20 ZŁ
16.24 ZŁ
Nie wiesz co wybrać?

Dzwoń do nas +48 888 99 98 98 lub pisz przez formularz zgłoszeniowy w sekcji kontakt.
Właściwości i formę magnesu skontrolujesz dzięki naszemu kalkulatorze masy magnetycznej.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Szczegóły techniczne - MPL 40x15x6 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 40x15x6 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020155
GTIN/EAN 5906301811619
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 40 mm [±0,1 mm]
Szerokość 15 mm [±0,1 mm]
Wysokość 6 mm [±0,1 mm]
Waga 27 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 14.21 kg / 139.45 N
Indukcja magnetyczna ~ ? 286.36 mT / 2864 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 40x15x6 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu - dane

Niniejsze wartości stanowią rezultat symulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 40x15x6 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 2863 Gs
286.3 mT
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
krytyczny poziom
1 mm 2635 Gs
263.5 mT
12.04 kg / 26.55 lbs
12041.8 g / 118.1 N
krytyczny poziom
2 mm 2385 Gs
238.5 mT
9.86 kg / 21.74 lbs
9859.1 g / 96.7 N
uwaga
3 mm 2132 Gs
213.2 mT
7.88 kg / 17.37 lbs
7880.1 g / 77.3 N
uwaga
5 mm 1670 Gs
167.0 mT
4.84 kg / 10.66 lbs
4837.1 g / 47.5 N
uwaga
10 mm 903 Gs
90.3 mT
1.41 kg / 3.11 lbs
1412.2 g / 13.9 N
bezpieczny
15 mm 520 Gs
52.0 mT
0.47 kg / 1.03 lbs
469.2 g / 4.6 N
bezpieczny
20 mm 320 Gs
32.0 mT
0.18 kg / 0.39 lbs
177.7 g / 1.7 N
bezpieczny
30 mm 141 Gs
14.1 mT
0.03 kg / 0.08 lbs
34.5 g / 0.3 N
bezpieczny
50 mm 41 Gs
4.1 mT
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
bezpieczny

Tabela 2: Siła równoległa obsunięcia (pion)
MPL 40x15x6 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
1 mm Stal (~0.2) 2.41 kg / 5.31 lbs
2408.0 g / 23.6 N
2 mm Stal (~0.2) 1.97 kg / 4.35 lbs
1972.0 g / 19.3 N
3 mm Stal (~0.2) 1.58 kg / 3.47 lbs
1576.0 g / 15.5 N
5 mm Stal (~0.2) 0.97 kg / 2.13 lbs
968.0 g / 9.5 N
10 mm Stal (~0.2) 0.28 kg / 0.62 lbs
282.0 g / 2.8 N
15 mm Stal (~0.2) 0.09 kg / 0.21 lbs
94.0 g / 0.9 N
20 mm Stal (~0.2) 0.04 kg / 0.08 lbs
36.0 g / 0.4 N
30 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 40x15x6 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
4.26 kg / 9.40 lbs
4263.0 g / 41.8 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
1.42 kg / 3.13 lbs
1421.0 g / 13.9 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
7.11 kg / 15.66 lbs
7105.0 g / 69.7 N

Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 40x15x6 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
0.71 kg / 1.57 lbs
710.5 g / 7.0 N
1 mm
13%
1.78 kg / 3.92 lbs
1776.3 g / 17.4 N
2 mm
25%
3.55 kg / 7.83 lbs
3552.5 g / 34.9 N
3 mm
38%
5.33 kg / 11.75 lbs
5328.8 g / 52.3 N
5 mm
63%
8.88 kg / 19.58 lbs
8881.3 g / 87.1 N
10 mm
100%
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
11 mm
100%
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
12 mm
100%
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 40x15x6 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
OK
40 °C -2.2% 13.90 kg / 30.64 lbs
13897.4 g / 136.3 N
OK
60 °C -4.4% 13.58 kg / 29.95 lbs
13584.8 g / 133.3 N
80 °C -6.6% 13.27 kg / 29.26 lbs
13272.1 g / 130.2 N
100 °C -28.8% 10.12 kg / 22.31 lbs
10117.5 g / 99.3 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 40x15x6 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 30.32 kg / 66.84 lbs
4 334 Gs
4.55 kg / 10.03 lbs
4547 g / 44.6 N
N/A
1 mm 28.06 kg / 61.86 lbs
5 508 Gs
4.21 kg / 9.28 lbs
4209 g / 41.3 N
25.25 kg / 55.67 lbs
~0 Gs
2 mm 25.69 kg / 56.64 lbs
5 271 Gs
3.85 kg / 8.50 lbs
3854 g / 37.8 N
23.12 kg / 50.97 lbs
~0 Gs
3 mm 23.33 kg / 51.43 lbs
5 023 Gs
3.50 kg / 7.71 lbs
3499 g / 34.3 N
21.00 kg / 46.29 lbs
~0 Gs
5 mm 18.85 kg / 41.56 lbs
4 515 Gs
2.83 kg / 6.23 lbs
2828 g / 27.7 N
16.97 kg / 37.40 lbs
~0 Gs
10 mm 10.32 kg / 22.75 lbs
3 341 Gs
1.55 kg / 3.41 lbs
1548 g / 15.2 N
9.29 kg / 20.48 lbs
~0 Gs
20 mm 3.01 kg / 6.64 lbs
1 805 Gs
0.45 kg / 1.00 lbs
452 g / 4.4 N
2.71 kg / 5.98 lbs
~0 Gs
50 mm 0.16 kg / 0.35 lbs
416 Gs
0.02 kg / 0.05 lbs
24 g / 0.2 N
0.14 kg / 0.32 lbs
~0 Gs
60 mm 0.07 kg / 0.16 lbs
282 Gs
0.01 kg / 0.02 lbs
11 g / 0.1 N
0.07 kg / 0.15 lbs
~0 Gs
70 mm 0.04 kg / 0.08 lbs
199 Gs
0.01 kg / 0.01 lbs
5 g / 0.1 N
0.03 kg / 0.07 lbs
~0 Gs
80 mm 0.02 kg / 0.04 lbs
144 Gs
0.00 kg / 0.01 lbs
3 g / 0.0 N
0.02 kg / 0.04 lbs
~0 Gs
90 mm 0.01 kg / 0.02 lbs
108 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
100 mm 0.01 kg / 0.01 lbs
83 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 40x15x6 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 11.0 cm
Implant słuchowy 10 Gs (1.0 mT) 8.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 7.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 5.5 cm
Pilot do auta 50 Gs (5.0 mT) 5.0 cm
Karta płatnicza 400 Gs (40.0 mT) 2.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.5 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x15x6 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 24.53 km/h
(6.81 m/s)
0.63 J
30 mm 40.13 km/h
(11.15 m/s)
1.68 J
50 mm 51.74 km/h
(14.37 m/s)
2.79 J
100 mm 73.16 km/h
(20.32 m/s)
5.58 J

Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x15x6 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x15x6 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 16 905 Mx 169.0 µWb
Współczynnik Pc 0.31 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x15x6 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 14.21 kg Standard
Woda (dno rzeki) 16.27 kg
(+2.06 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Siła zsuwająca

*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek nominalnego udźwigu.

2. Wpływ grubości blachy

*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.

3. Spadek mocy w temperaturze

*Dla materiału N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020155-2026
Szybki konwerter jednostek
Siła (udźwig)

Pole magnetyczne

Sprawdź inne produkty

Produkt ten to bardzo silny magnes płytkowy wykonany z materiału NdFeB, co przy wymiarach 40x15x6 mm i wadze 27 g gwarantuje klasę premium połączenia. Jako magnes blokowy o dużej mocy (ok. 14.21 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Rozdzielanie magnesów blokowych wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Uważaj na palce! Magnesy o sile 14.21 kg potrafią bardzo mocno uszczypnąć i spowodować krwiaki. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Magnesy płytkowe MPL 40x15x6 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak filtry wyłapujące opiłki oraz silniki liniowe. Świetnie sprawdzają się jako niewidoczne mocowania pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 40x15x6 / N38 polecamy stosować kleje dwuskładnikowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem zmatowić i przemyć powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (40x15 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 40x15x6 mm, co przy wadze 27 g czyni go elementem o imponującej gęstości energii. Jest to blok magnetyczny o gabarytach 40x15x6 mm i masie własnej 27 g, gotowy do pracy w temperaturze do 80°C. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety oraz wady magnesów neodymowych Nd2Fe14B.

Mocne strony

Warto zwrócić uwagę, że obok wysokiej mocy, magnesy te wyróżniają się następującymi zaletami:
  • Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
  • Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
  • Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
  • Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
  • Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.

Słabe strony

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
  • Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Analiza siły trzymania

Siła oderwania magnesu w optymalnych warunkachco się na to składa?

Siła oderwania została określona dla najkorzystniejszych warunków, uwzględniającej:
  • z wykorzystaniem płyty ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
  • posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
  • charakteryzującej się równą strukturą
  • w warunkach bezszczelinowych (metal do metalu)
  • dla siły przyłożonej pod kątem prostym (w osi magnesu)
  • w warunkach ok. 20°C

Co wpływa na udźwig w praktyce

Podczas codziennego użytkowania, realna moc zależy od szeregu czynników, które przedstawiamy od najbardziej istotnych:
  • Dystans (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
  • Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
  • Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują przenikalność magnetyczną i udźwig.
  • Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
  • Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.

Udźwig wyznaczano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.

Ostrzeżenia
Kruchość materiału

Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.

Uszkodzenia czujników

Silne pole magnetyczne wpływa negatywnie na działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.

Ostrzeżenie dla sercowców

Osoby z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.

Dla uczulonych

Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.

Świadome użytkowanie

Używaj magnesy z rozwagą. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.

Ryzyko rozmagnesowania

Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.

Urządzenia elektroniczne

Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).

Ryzyko pożaru

Pył powstający podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Siła zgniatająca

Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.

Uwaga: zadławienie

Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.

Bezpieczeństwo! Szczegółowe omówienie o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98