MPL 30x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020448
GTIN/EAN: 5906301811923
Długość
30 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
5.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.03 kg / 68.96 N
Indukcja magnetyczna
446.27 mT / 4463 Gs
Powłoka
[NiCuNi] nikiel
4.15 ZŁ z VAT / szt. + cena za transport
3.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz poprzez
formularz
na stronie kontaktowej.
Udźwig a także formę magnesu neodymowego testujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MPL 30x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020448 |
| GTIN/EAN | 5906301811923 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 5.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.03 kg / 68.96 N |
| Indukcja magnetyczna ~ ? | 446.27 mT / 4463 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Niniejsze informacje stanowią rezultat kalkulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 30x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4458 Gs
445.8 mT
|
7.03 kg / 7030.0 g
69.0 N
|
średnie ryzyko |
| 1 mm |
3235 Gs
323.5 mT
|
3.70 kg / 3702.2 g
36.3 N
|
średnie ryzyko |
| 2 mm |
2271 Gs
227.1 mT
|
1.82 kg / 1825.0 g
17.9 N
|
słaby uchwyt |
| 3 mm |
1628 Gs
162.8 mT
|
0.94 kg / 937.0 g
9.2 N
|
słaby uchwyt |
| 5 mm |
927 Gs
92.7 mT
|
0.30 kg / 304.2 g
3.0 N
|
słaby uchwyt |
| 10 mm |
342 Gs
34.2 mT
|
0.04 kg / 41.4 g
0.4 N
|
słaby uchwyt |
| 15 mm |
166 Gs
16.6 mT
|
0.01 kg / 9.7 g
0.1 N
|
słaby uchwyt |
| 20 mm |
92 Gs
9.2 mT
|
0.00 kg / 3.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.5 g
0.0 N
|
słaby uchwyt |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 30x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.41 kg / 1406.0 g
13.8 N
|
| 1 mm | Stal (~0.2) |
0.74 kg / 740.0 g
7.3 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 364.0 g
3.6 N
|
| 3 mm | Stal (~0.2) |
0.19 kg / 188.0 g
1.8 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 60.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 30x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.11 kg / 2109.0 g
20.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.41 kg / 1406.0 g
13.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.70 kg / 703.0 g
6.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.52 kg / 3515.0 g
34.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 30x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.70 kg / 703.0 g
6.9 N
|
| 1 mm |
|
1.76 kg / 1757.5 g
17.2 N
|
| 2 mm |
|
3.52 kg / 3515.0 g
34.5 N
|
| 5 mm |
|
7.03 kg / 7030.0 g
69.0 N
|
| 10 mm |
|
7.03 kg / 7030.0 g
69.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 30x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.03 kg / 7030.0 g
69.0 N
|
OK |
| 40 °C | -2.2% |
6.88 kg / 6875.3 g
67.4 N
|
OK |
| 60 °C | -4.4% |
6.72 kg / 6720.7 g
65.9 N
|
|
| 80 °C | -6.6% |
6.57 kg / 6566.0 g
64.4 N
|
|
| 100 °C | -28.8% |
5.01 kg / 5005.4 g
49.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 30x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
18.38 kg / 18378 g
180.3 N
5 383 Gs
|
N/A |
| 1 mm |
13.60 kg / 13601 g
133.4 N
7 670 Gs
|
12.24 kg / 12241 g
120.1 N
~0 Gs
|
| 2 mm |
9.68 kg / 9678 g
94.9 N
6 470 Gs
|
8.71 kg / 8710 g
85.4 N
~0 Gs
|
| 3 mm |
6.79 kg / 6790 g
66.6 N
5 419 Gs
|
6.11 kg / 6111 g
59.9 N
~0 Gs
|
| 5 mm |
3.39 kg / 3391 g
33.3 N
3 830 Gs
|
3.05 kg / 3052 g
29.9 N
~0 Gs
|
| 10 mm |
0.80 kg / 795 g
7.8 N
1 855 Gs
|
0.72 kg / 716 g
7.0 N
~0 Gs
|
| 20 mm |
0.11 kg / 108 g
1.1 N
684 Gs
|
0.10 kg / 97 g
1.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
111 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 30x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 30x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
35.77 km/h
(9.94 m/s)
|
0.28 J | |
| 30 mm |
61.73 km/h
(17.15 m/s)
|
0.83 J | |
| 50 mm |
79.69 km/h
(22.14 m/s)
|
1.38 J | |
| 100 mm |
112.70 km/h
(31.30 m/s)
|
2.76 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 30x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 700 Mx | 57.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 30x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.03 kg | Standard |
| Woda (dno rzeki) |
8.05 kg
(+1.02 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość stali – za chuda płyta nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Interferencja magnetyczna
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Tylko dla dorosłych
Silne magnesy to nie zabawki. Inhalacja dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Unikaj kontaktu w przypadku alergii
Część populacji posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Wskazane jest stosowanie rękawic bezlateksowych.
Wrażliwość na ciepło
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Ogromna siła
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Zagrożenie fizyczne
Duże magnesy mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
