MPL 30x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020448
GTIN/EAN: 5906301811923
Długość
30 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
5.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.03 kg / 68.96 N
Indukcja magnetyczna
446.27 mT / 4463 Gs
Powłoka
[NiCuNi] nikiel
4.15 ZŁ z VAT / szt. + cena za transport
3.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub skontaktuj się poprzez
formularz zapytania
na naszej stronie.
Udźwig a także formę magnesów skontrolujesz w naszym
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 30x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020448 |
| GTIN/EAN | 5906301811923 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 5.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.03 kg / 68.96 N |
| Indukcja magnetyczna ~ ? | 446.27 mT / 4463 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe informacje są bezpośredni efekt analizy matematycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 30x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4458 Gs
445.8 mT
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
uwaga |
| 1 mm |
3235 Gs
323.5 mT
|
3.70 kg / 8.16 lbs
3702.2 g / 36.3 N
|
uwaga |
| 2 mm |
2271 Gs
227.1 mT
|
1.82 kg / 4.02 lbs
1825.0 g / 17.9 N
|
bezpieczny |
| 3 mm |
1628 Gs
162.8 mT
|
0.94 kg / 2.07 lbs
937.0 g / 9.2 N
|
bezpieczny |
| 5 mm |
927 Gs
92.7 mT
|
0.30 kg / 0.67 lbs
304.2 g / 3.0 N
|
bezpieczny |
| 10 mm |
342 Gs
34.2 mT
|
0.04 kg / 0.09 lbs
41.4 g / 0.4 N
|
bezpieczny |
| 15 mm |
166 Gs
16.6 mT
|
0.01 kg / 0.02 lbs
9.7 g / 0.1 N
|
bezpieczny |
| 20 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 30x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.41 kg / 3.10 lbs
1406.0 g / 13.8 N
|
| 1 mm | Stal (~0.2) |
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| 3 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 30x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.11 kg / 4.65 lbs
2109.0 g / 20.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.41 kg / 3.10 lbs
1406.0 g / 13.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.70 kg / 1.55 lbs
703.0 g / 6.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.52 kg / 7.75 lbs
3515.0 g / 34.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 30x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.70 kg / 1.55 lbs
703.0 g / 6.9 N
|
| 1 mm |
|
1.76 kg / 3.87 lbs
1757.5 g / 17.2 N
|
| 2 mm |
|
3.52 kg / 7.75 lbs
3515.0 g / 34.5 N
|
| 3 mm |
|
5.27 kg / 11.62 lbs
5272.5 g / 51.7 N
|
| 5 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 10 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 11 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 12 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 30x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
OK |
| 40 °C | -2.2% |
6.88 kg / 15.16 lbs
6875.3 g / 67.4 N
|
OK |
| 60 °C | -4.4% |
6.72 kg / 14.82 lbs
6720.7 g / 65.9 N
|
|
| 80 °C | -6.6% |
6.57 kg / 14.48 lbs
6566.0 g / 64.4 N
|
|
| 100 °C | -28.8% |
5.01 kg / 11.03 lbs
5005.4 g / 49.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 30x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.38 kg / 40.52 lbs
5 383 Gs
|
2.76 kg / 6.08 lbs
2757 g / 27.0 N
|
N/A |
| 1 mm |
13.60 kg / 29.99 lbs
7 670 Gs
|
2.04 kg / 4.50 lbs
2040 g / 20.0 N
|
12.24 kg / 26.99 lbs
~0 Gs
|
| 2 mm |
9.68 kg / 21.34 lbs
6 470 Gs
|
1.45 kg / 3.20 lbs
1452 g / 14.2 N
|
8.71 kg / 19.20 lbs
~0 Gs
|
| 3 mm |
6.79 kg / 14.97 lbs
5 419 Gs
|
1.02 kg / 2.25 lbs
1018 g / 10.0 N
|
6.11 kg / 13.47 lbs
~0 Gs
|
| 5 mm |
3.39 kg / 7.48 lbs
3 830 Gs
|
0.51 kg / 1.12 lbs
509 g / 5.0 N
|
3.05 kg / 6.73 lbs
~0 Gs
|
| 10 mm |
0.80 kg / 1.75 lbs
1 855 Gs
|
0.12 kg / 0.26 lbs
119 g / 1.2 N
|
0.72 kg / 1.58 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.24 lbs
684 Gs
|
0.02 kg / 0.04 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
111 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 30x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 30x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
35.77 km/h
(9.94 m/s)
|
0.28 J | |
| 30 mm |
61.73 km/h
(17.15 m/s)
|
0.83 J | |
| 50 mm |
79.69 km/h
(22.14 m/s)
|
1.38 J | |
| 100 mm |
112.70 km/h
(31.30 m/s)
|
2.76 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 30x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 30x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 700 Mx | 57.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 30x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.03 kg | Standard |
| Woda (dno rzeki) |
8.05 kg
(+1.02 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z wykorzystaniem płyty ze miękkiej stali, działającej jako element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak powłok)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Ryzyko pożaru
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Maksymalna temperatura
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ryzyko złamań
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni między dwa silne magnesy.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Zagrożenie dla najmłodszych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Interferencja medyczna
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Bezpieczna praca
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Nośniki danych
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Ostrzeżenie dla alergików
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
