MPL 30x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020448
GTIN/EAN: 5906301811923
Długość
30 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
5.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.03 kg / 68.96 N
Indukcja magnetyczna
446.27 mT / 4463 Gs
Powłoka
[NiCuNi] nikiel
4.15 ZŁ z VAT / szt. + cena za transport
3.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie daj znać poprzez
formularz zgłoszeniowy
przez naszą stronę.
Właściwości oraz kształt magnesów neodymowych wyliczysz w naszym
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane - MPL 30x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020448 |
| GTIN/EAN | 5906301811923 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 5.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.03 kg / 68.96 N |
| Indukcja magnetyczna ~ ? | 446.27 mT / 4463 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Niniejsze wartości stanowią wynik symulacji fizycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 30x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4458 Gs
445.8 mT
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
uwaga |
| 1 mm |
3235 Gs
323.5 mT
|
3.70 kg / 8.16 lbs
3702.2 g / 36.3 N
|
uwaga |
| 2 mm |
2271 Gs
227.1 mT
|
1.82 kg / 4.02 lbs
1825.0 g / 17.9 N
|
słaby uchwyt |
| 3 mm |
1628 Gs
162.8 mT
|
0.94 kg / 2.07 lbs
937.0 g / 9.2 N
|
słaby uchwyt |
| 5 mm |
927 Gs
92.7 mT
|
0.30 kg / 0.67 lbs
304.2 g / 3.0 N
|
słaby uchwyt |
| 10 mm |
342 Gs
34.2 mT
|
0.04 kg / 0.09 lbs
41.4 g / 0.4 N
|
słaby uchwyt |
| 15 mm |
166 Gs
16.6 mT
|
0.01 kg / 0.02 lbs
9.7 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 30x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.41 kg / 3.10 lbs
1406.0 g / 13.8 N
|
| 1 mm | Stal (~0.2) |
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| 3 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 30x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.11 kg / 4.65 lbs
2109.0 g / 20.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.41 kg / 3.10 lbs
1406.0 g / 13.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.70 kg / 1.55 lbs
703.0 g / 6.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.52 kg / 7.75 lbs
3515.0 g / 34.5 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 30x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.70 kg / 1.55 lbs
703.0 g / 6.9 N
|
| 1 mm |
|
1.76 kg / 3.87 lbs
1757.5 g / 17.2 N
|
| 2 mm |
|
3.52 kg / 7.75 lbs
3515.0 g / 34.5 N
|
| 3 mm |
|
5.27 kg / 11.62 lbs
5272.5 g / 51.7 N
|
| 5 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 10 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 11 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
| 12 mm |
|
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 30x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.03 kg / 15.50 lbs
7030.0 g / 69.0 N
|
OK |
| 40 °C | -2.2% |
6.88 kg / 15.16 lbs
6875.3 g / 67.4 N
|
OK |
| 60 °C | -4.4% |
6.72 kg / 14.82 lbs
6720.7 g / 65.9 N
|
|
| 80 °C | -6.6% |
6.57 kg / 14.48 lbs
6566.0 g / 64.4 N
|
|
| 100 °C | -28.8% |
5.01 kg / 11.03 lbs
5005.4 g / 49.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 30x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.38 kg / 40.52 lbs
5 383 Gs
|
2.76 kg / 6.08 lbs
2757 g / 27.0 N
|
N/A |
| 1 mm |
13.60 kg / 29.99 lbs
7 670 Gs
|
2.04 kg / 4.50 lbs
2040 g / 20.0 N
|
12.24 kg / 26.99 lbs
~0 Gs
|
| 2 mm |
9.68 kg / 21.34 lbs
6 470 Gs
|
1.45 kg / 3.20 lbs
1452 g / 14.2 N
|
8.71 kg / 19.20 lbs
~0 Gs
|
| 3 mm |
6.79 kg / 14.97 lbs
5 419 Gs
|
1.02 kg / 2.25 lbs
1018 g / 10.0 N
|
6.11 kg / 13.47 lbs
~0 Gs
|
| 5 mm |
3.39 kg / 7.48 lbs
3 830 Gs
|
0.51 kg / 1.12 lbs
509 g / 5.0 N
|
3.05 kg / 6.73 lbs
~0 Gs
|
| 10 mm |
0.80 kg / 1.75 lbs
1 855 Gs
|
0.12 kg / 0.26 lbs
119 g / 1.2 N
|
0.72 kg / 1.58 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.24 lbs
684 Gs
|
0.02 kg / 0.04 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
111 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 30x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 30x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
35.77 km/h
(9.94 m/s)
|
0.28 J | |
| 30 mm |
61.73 km/h
(17.15 m/s)
|
0.83 J | |
| 50 mm |
79.69 km/h
(22.14 m/s)
|
1.38 J | |
| 100 mm |
112.70 km/h
(31.30 m/s)
|
2.76 J |
Tabela 9: Odporność na korozję
MPL 30x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 30x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 700 Mx | 57.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.03 kg | Standard |
| Woda (dno rzeki) |
8.05 kg
(+1.02 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- z użyciem blachy ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- o przekroju przynajmniej 10 mm
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (metal do metalu)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Niebezpieczeństwo przytrzaśnięcia
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Ogromna siła
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie dla najmłodszych
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Podatność na pękanie
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
