MPL 25x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020135
GTIN/EAN: 5906301811411
Długość
25 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
9.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.49 kg / 73.45 N
Indukcja magnetyczna
337.05 mT / 3371 Gs
Powłoka
[NiCuNi] nikiel
4.66 ZŁ z VAT / szt. + cena za transport
3.79 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie skontaktuj się korzystając z
formularz zgłoszeniowy
w sekcji kontakt.
Masę oraz formę magnesów skontrolujesz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 25x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020135 |
| GTIN/EAN | 5906301811411 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 9.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.49 kg / 73.45 N |
| Indukcja magnetyczna ~ ? | 337.05 mT / 3371 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Przedstawione wartości stanowią bezpośredni efekt kalkulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 25x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3369 Gs
336.9 mT
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
mocny |
| 1 mm |
2932 Gs
293.2 mT
|
5.67 kg / 12.51 lbs
5673.2 g / 55.7 N
|
mocny |
| 2 mm |
2479 Gs
247.9 mT
|
4.06 kg / 8.94 lbs
4056.9 g / 39.8 N
|
mocny |
| 3 mm |
2065 Gs
206.5 mT
|
2.81 kg / 6.21 lbs
2814.7 g / 27.6 N
|
mocny |
| 5 mm |
1419 Gs
141.9 mT
|
1.33 kg / 2.93 lbs
1328.6 g / 13.0 N
|
bezpieczny |
| 10 mm |
603 Gs
60.3 mT
|
0.24 kg / 0.53 lbs
240.3 g / 2.4 N
|
bezpieczny |
| 15 mm |
296 Gs
29.6 mT
|
0.06 kg / 0.13 lbs
57.8 g / 0.6 N
|
bezpieczny |
| 20 mm |
162 Gs
16.2 mT
|
0.02 kg / 0.04 lbs
17.4 g / 0.2 N
|
bezpieczny |
| 30 mm |
62 Gs
6.2 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 25x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| 1 mm | Stal (~0.2) |
1.13 kg / 2.50 lbs
1134.0 g / 11.1 N
|
| 2 mm | Stal (~0.2) |
0.81 kg / 1.79 lbs
812.0 g / 8.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
562.0 g / 5.5 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 25x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.25 kg / 4.95 lbs
2247.0 g / 22.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.75 kg / 1.65 lbs
749.0 g / 7.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.75 kg / 8.26 lbs
3745.0 g / 36.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 25x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.75 kg / 1.65 lbs
749.0 g / 7.3 N
|
| 1 mm |
|
1.87 kg / 4.13 lbs
1872.5 g / 18.4 N
|
| 2 mm |
|
3.75 kg / 8.26 lbs
3745.0 g / 36.7 N
|
| 3 mm |
|
5.62 kg / 12.38 lbs
5617.5 g / 55.1 N
|
| 5 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 10 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 11 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 12 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 25x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
OK |
| 40 °C | -2.2% |
7.33 kg / 16.15 lbs
7325.2 g / 71.9 N
|
OK |
| 60 °C | -4.4% |
7.16 kg / 15.79 lbs
7160.4 g / 70.2 N
|
|
| 80 °C | -6.6% |
7.00 kg / 15.42 lbs
6995.7 g / 68.6 N
|
|
| 100 °C | -28.8% |
5.33 kg / 11.76 lbs
5332.9 g / 52.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 25x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.49 kg / 38.57 lbs
4 785 Gs
|
2.62 kg / 5.78 lbs
2624 g / 25.7 N
|
N/A |
| 1 mm |
15.37 kg / 33.89 lbs
6 316 Gs
|
2.31 kg / 5.08 lbs
2306 g / 22.6 N
|
13.84 kg / 30.50 lbs
~0 Gs
|
| 2 mm |
13.25 kg / 29.21 lbs
5 864 Gs
|
1.99 kg / 4.38 lbs
1987 g / 19.5 N
|
11.92 kg / 26.29 lbs
~0 Gs
|
| 3 mm |
11.26 kg / 24.83 lbs
5 407 Gs
|
1.69 kg / 3.72 lbs
1690 g / 16.6 N
|
10.14 kg / 22.35 lbs
~0 Gs
|
| 5 mm |
7.91 kg / 17.44 lbs
4 531 Gs
|
1.19 kg / 2.62 lbs
1187 g / 11.6 N
|
7.12 kg / 15.70 lbs
~0 Gs
|
| 10 mm |
3.10 kg / 6.84 lbs
2 838 Gs
|
0.47 kg / 1.03 lbs
465 g / 4.6 N
|
2.79 kg / 6.16 lbs
~0 Gs
|
| 20 mm |
0.56 kg / 1.24 lbs
1 207 Gs
|
0.08 kg / 0.19 lbs
84 g / 0.8 N
|
0.51 kg / 1.11 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
194 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
124 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 25x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 25x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.06 km/h
(8.07 m/s)
|
0.31 J | |
| 30 mm |
49.37 km/h
(13.71 m/s)
|
0.88 J | |
| 50 mm |
63.73 km/h
(17.70 m/s)
|
1.47 J | |
| 100 mm |
90.12 km/h
(25.03 m/s)
|
2.94 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 25x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 25x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 245 Mx | 82.5 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 25x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.49 kg | Standard |
| Woda (dno rzeki) |
8.58 kg
(+1.09 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi zaledwie ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość to min. 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Odstęp (między magnesem a blachą), gdyż nawet bardzo mała przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między magnesem, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla najmłodszych
Silne magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Zagrożenie życia
Osoby z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Nie lekceważ mocy
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Ryzyko uczulenia
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Karty i dyski
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Urazy ciała
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
