MPL 20x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020129
GTIN/EAN: 5906301811350
Długość
20 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
60 g
Kierunek magnesowania
↑ osiowy
Udźwig
15.40 kg / 151.12 N
Indukcja magnetyczna
540.22 mT / 5402 Gs
Powłoka
[NiCuNi] nikiel
33.21 ZŁ z VAT / szt. + cena za transport
27.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie napisz za pomocą
formularz zapytania
na naszej stronie.
Parametry a także wygląd elementów magnetycznych wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 20x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020129 |
| GTIN/EAN | 5906301811350 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 60 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 15.40 kg / 151.12 N |
| Indukcja magnetyczna ~ ? | 540.22 mT / 5402 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione informacje są wynik analizy matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 20x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5400 Gs
540.0 mT
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
miażdżący |
| 1 mm |
4910 Gs
491.0 mT
|
12.73 kg / 28.07 lbs
12732.2 g / 124.9 N
|
miażdżący |
| 2 mm |
4423 Gs
442.3 mT
|
10.33 kg / 22.77 lbs
10328.3 g / 101.3 N
|
miażdżący |
| 3 mm |
3955 Gs
395.5 mT
|
8.26 kg / 18.21 lbs
8258.3 g / 81.0 N
|
mocny |
| 5 mm |
3114 Gs
311.4 mT
|
5.12 kg / 11.29 lbs
5120.3 g / 50.2 N
|
mocny |
| 10 mm |
1671 Gs
167.1 mT
|
1.48 kg / 3.25 lbs
1475.0 g / 14.5 N
|
słaby uchwyt |
| 15 mm |
936 Gs
93.6 mT
|
0.46 kg / 1.02 lbs
463.0 g / 4.5 N
|
słaby uchwyt |
| 20 mm |
562 Gs
56.2 mT
|
0.17 kg / 0.37 lbs
167.1 g / 1.6 N
|
słaby uchwyt |
| 30 mm |
244 Gs
24.4 mT
|
0.03 kg / 0.07 lbs
31.3 g / 0.3 N
|
słaby uchwyt |
| 50 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 20x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.08 kg / 6.79 lbs
3080.0 g / 30.2 N
|
| 1 mm | Stal (~0.2) |
2.55 kg / 5.61 lbs
2546.0 g / 25.0 N
|
| 2 mm | Stal (~0.2) |
2.07 kg / 4.55 lbs
2066.0 g / 20.3 N
|
| 3 mm | Stal (~0.2) |
1.65 kg / 3.64 lbs
1652.0 g / 16.2 N
|
| 5 mm | Stal (~0.2) |
1.02 kg / 2.26 lbs
1024.0 g / 10.0 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 20x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.62 kg / 10.19 lbs
4620.0 g / 45.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.08 kg / 6.79 lbs
3080.0 g / 30.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 20x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 1 mm |
|
1.93 kg / 4.24 lbs
1925.0 g / 18.9 N
|
| 2 mm |
|
3.85 kg / 8.49 lbs
3850.0 g / 37.8 N
|
| 3 mm |
|
5.78 kg / 12.73 lbs
5775.0 g / 56.7 N
|
| 5 mm |
|
9.63 kg / 21.22 lbs
9625.0 g / 94.4 N
|
| 10 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
| 11 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
| 12 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 20x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
OK |
| 40 °C | -2.2% |
15.06 kg / 33.20 lbs
15061.2 g / 147.8 N
|
OK |
| 60 °C | -4.4% |
14.72 kg / 32.46 lbs
14722.4 g / 144.4 N
|
OK |
| 80 °C | -6.6% |
14.38 kg / 31.71 lbs
14383.6 g / 141.1 N
|
|
| 100 °C | -28.8% |
10.96 kg / 24.17 lbs
10964.8 g / 107.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 20x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.92 kg / 158.55 lbs
5 962 Gs
|
10.79 kg / 23.78 lbs
10787 g / 105.8 N
|
N/A |
| 1 mm |
65.60 kg / 144.63 lbs
10 316 Gs
|
9.84 kg / 21.69 lbs
9840 g / 96.5 N
|
59.04 kg / 130.16 lbs
~0 Gs
|
| 2 mm |
59.46 kg / 131.08 lbs
9 821 Gs
|
8.92 kg / 19.66 lbs
8919 g / 87.5 N
|
53.51 kg / 117.97 lbs
~0 Gs
|
| 3 mm |
53.66 kg / 118.30 lbs
9 329 Gs
|
8.05 kg / 17.74 lbs
8049 g / 79.0 N
|
48.29 kg / 106.47 lbs
~0 Gs
|
| 5 mm |
43.20 kg / 95.24 lbs
8 371 Gs
|
6.48 kg / 14.29 lbs
6480 g / 63.6 N
|
38.88 kg / 85.71 lbs
~0 Gs
|
| 10 mm |
23.91 kg / 52.72 lbs
6 228 Gs
|
3.59 kg / 7.91 lbs
3587 g / 35.2 N
|
21.52 kg / 47.44 lbs
~0 Gs
|
| 20 mm |
6.89 kg / 15.19 lbs
3 343 Gs
|
1.03 kg / 2.28 lbs
1033 g / 10.1 N
|
6.20 kg / 13.67 lbs
~0 Gs
|
| 50 mm |
0.32 kg / 0.71 lbs
721 Gs
|
0.05 kg / 0.11 lbs
48 g / 0.5 N
|
0.29 kg / 0.64 lbs
~0 Gs
|
| 60 mm |
0.15 kg / 0.32 lbs
487 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.16 lbs
344 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.09 lbs
251 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
189 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
146 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 20x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.10 km/h
(4.75 m/s)
|
0.68 J | |
| 30 mm |
28.02 km/h
(7.78 m/s)
|
1.82 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
3.02 J | |
| 100 mm |
51.09 km/h
(14.19 m/s)
|
6.04 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 20x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 017 Mx | 220.2 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 20x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 15.40 kg | Standard |
| Woda (dno rzeki) |
17.63 kg
(+2.23 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się gładkością
- przy zerowej szczelinie (bez farby)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano używając gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje udźwig.
Bezpieczna praca z magnesami neodymowymi
Ryzyko złamań
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ostrożność wymagana
Używaj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko połknięcia
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Ryzyko pożaru
Proszek generowany podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko rozmagnesowania
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Uwaga medyczna
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Ochrona urządzeń
Ekstremalne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
