MP 5x2.7/1.2x5 S / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030202
GTIN/EAN: 5906301812197
Średnica
5 mm [±0,1 mm]
Średnica wewnętrzna Ø
2.7/1.2 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
0.69 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.75 kg / 7.31 N
Indukcja magnetyczna
553.14 mT / 5531 Gs
Powłoka
[NiCuNi] nikiel
0.836 ZŁ z VAT / szt. + cena za transport
0.680 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie daj znać przez
formularz
na stronie kontaktowej.
Udźwig i kształt magnesu przetestujesz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MP 5x2.7/1.2x5 S / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 5x2.7/1.2x5 S / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030202 |
| GTIN/EAN | 5906301812197 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 5 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 2.7/1.2 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 0.69 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.75 kg / 7.31 N |
| Indukcja magnetyczna ~ ? | 553.14 mT / 5531 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu neodymowego - raport
Niniejsze dane stanowią rezultat kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
MP 5x2.7/1.2x5 S / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 750.0 g
7.4 N
|
bezpieczny |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 287.5 g
2.8 N
|
bezpieczny |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 93.9 g
0.9 N
|
bezpieczny |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 31.9 g
0.3 N
|
bezpieczny |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 5.1 g
0.1 N
|
bezpieczny |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MP 5x2.7/1.2x5 S / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 5x2.7/1.2x5 S / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 225.0 g
2.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 150.0 g
1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 75.0 g
0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 375.0 g
3.7 N
|
MP 5x2.7/1.2x5 S / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 75.0 g
0.7 N
|
| 1 mm |
|
0.19 kg / 187.5 g
1.8 N
|
| 2 mm |
|
0.38 kg / 375.0 g
3.7 N
|
| 5 mm |
|
0.75 kg / 750.0 g
7.4 N
|
| 10 mm |
|
0.75 kg / 750.0 g
7.4 N
|
MP 5x2.7/1.2x5 S / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 750.0 g
7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 733.5 g
7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 717.0 g
7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 700.5 g
6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 534.0 g
5.2 N
|
MP 5x2.7/1.2x5 S / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.75 kg / 2747 g
26.9 N
5 924 Gs
|
N/A |
| 1 mm |
1.77 kg / 1768 g
17.3 N
8 541 Gs
|
1.59 kg / 1592 g
15.6 N
~0 Gs
|
| 2 mm |
1.05 kg / 1053 g
10.3 N
6 590 Gs
|
0.95 kg / 948 g
9.3 N
~0 Gs
|
| 3 mm |
0.60 kg / 604 g
5.9 N
4 992 Gs
|
0.54 kg / 544 g
5.3 N
~0 Gs
|
| 5 mm |
0.20 kg / 198 g
1.9 N
2 860 Gs
|
0.18 kg / 178 g
1.8 N
~0 Gs
|
| 10 mm |
0.02 kg / 19 g
0.2 N
880 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
184 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MP 5x2.7/1.2x5 S / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MP 5x2.7/1.2x5 S / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
MP 5x2.7/1.2x5 S / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 5x2.7/1.2x5 S / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 862 Mx | 8.6 µWb |
| Współczynnik Pc | 0.83 | Wysoki (Stabilny) |
MP 5x2.7/1.2x5 S / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.75 kg | Standard |
| Woda (dno rzeki) |
0.86 kg
(+0.11 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.83
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- z powierzchnią oczyszczoną i gładką
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Szczelina – występowanie jakiejkolwiek warstwy (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Urazy ciała
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Przegrzanie magnesu
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Karty i dyski
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Pył jest łatwopalny
Proszek generowany podczas cięcia magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Kruchy spiek
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Nadwrażliwość na metale
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Zagrożenie dla najmłodszych
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie czujników w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
