MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030199
GTIN/EAN: 5906301812166
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
35.34 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.24 kg / 70.98 N
Indukcja magnetyczna
150.36 mT / 1504 Gs
Powłoka
[NiCuNi] nikiel
12.24 ZŁ z VAT / szt. + cena za transport
9.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie daj znać przez
formularz kontaktowy
na naszej stronie.
Parametry i kształt magnesów neodymowych zobaczysz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna - MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030199 |
| GTIN/EAN | 5906301812166 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 35.34 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.24 kg / 70.98 N |
| Indukcja magnetyczna ~ ? | 150.36 mT / 1504 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Poniższe informacje stanowią rezultat symulacji fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MP 40x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
uwaga |
| 1 mm |
5005 Gs
500.5 mT
|
6.53 kg / 14.41 lbs
6534.7 g / 64.1 N
|
uwaga |
| 2 mm |
4739 Gs
473.9 mT
|
5.86 kg / 12.91 lbs
5857.7 g / 57.5 N
|
uwaga |
| 3 mm |
4475 Gs
447.5 mT
|
5.22 kg / 11.51 lbs
5222.2 g / 51.2 N
|
uwaga |
| 5 mm |
3960 Gs
396.0 mT
|
4.09 kg / 9.02 lbs
4090.8 g / 40.1 N
|
uwaga |
| 10 mm |
2832 Gs
283.2 mT
|
2.09 kg / 4.61 lbs
2092.3 g / 20.5 N
|
uwaga |
| 15 mm |
1990 Gs
199.0 mT
|
1.03 kg / 2.28 lbs
1033.4 g / 10.1 N
|
niskie ryzyko |
| 20 mm |
1407 Gs
140.7 mT
|
0.52 kg / 1.14 lbs
516.3 g / 5.1 N
|
niskie ryzyko |
| 30 mm |
745 Gs
74.5 mT
|
0.14 kg / 0.32 lbs
144.6 g / 1.4 N
|
niskie ryzyko |
| 50 mm |
268 Gs
26.8 mT
|
0.02 kg / 0.04 lbs
18.7 g / 0.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 40x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.45 kg / 3.19 lbs
1448.0 g / 14.2 N
|
| 1 mm | Stal (~0.2) |
1.31 kg / 2.88 lbs
1306.0 g / 12.8 N
|
| 2 mm | Stal (~0.2) |
1.17 kg / 2.58 lbs
1172.0 g / 11.5 N
|
| 3 mm | Stal (~0.2) |
1.04 kg / 2.30 lbs
1044.0 g / 10.2 N
|
| 5 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
818.0 g / 8.0 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 40x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 4.79 lbs
2172.0 g / 21.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.45 kg / 3.19 lbs
1448.0 g / 14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 1.60 lbs
724.0 g / 7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.62 kg / 7.98 lbs
3620.0 g / 35.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 40x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 1.60 lbs
724.0 g / 7.1 N
|
| 1 mm |
|
1.81 kg / 3.99 lbs
1810.0 g / 17.8 N
|
| 2 mm |
|
3.62 kg / 7.98 lbs
3620.0 g / 35.5 N
|
| 3 mm |
|
5.43 kg / 11.97 lbs
5430.0 g / 53.3 N
|
| 5 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
| 10 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
| 11 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
| 12 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 40x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
OK |
| 40 °C | -2.2% |
7.08 kg / 15.61 lbs
7080.7 g / 69.5 N
|
OK |
| 60 °C | -4.4% |
6.92 kg / 15.26 lbs
6921.4 g / 67.9 N
|
OK |
| 80 °C | -6.6% |
6.76 kg / 14.91 lbs
6762.2 g / 66.3 N
|
|
| 100 °C | -28.8% |
5.15 kg / 11.36 lbs
5154.9 g / 50.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 40x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
179.94 kg / 396.69 lbs
5 920 Gs
|
26.99 kg / 59.50 lbs
26991 g / 264.8 N
|
N/A |
| 1 mm |
171.16 kg / 377.35 lbs
10 277 Gs
|
25.67 kg / 56.60 lbs
25675 g / 251.9 N
|
154.05 kg / 339.62 lbs
~0 Gs
|
| 2 mm |
162.41 kg / 358.05 lbs
10 011 Gs
|
24.36 kg / 53.71 lbs
24361 g / 239.0 N
|
146.17 kg / 322.24 lbs
~0 Gs
|
| 3 mm |
153.87 kg / 339.24 lbs
9 744 Gs
|
23.08 kg / 50.89 lbs
23081 g / 226.4 N
|
138.49 kg / 305.31 lbs
~0 Gs
|
| 5 mm |
137.55 kg / 303.25 lbs
9 213 Gs
|
20.63 kg / 45.49 lbs
20633 g / 202.4 N
|
123.80 kg / 272.92 lbs
~0 Gs
|
| 10 mm |
101.67 kg / 224.14 lbs
7 921 Gs
|
15.25 kg / 33.62 lbs
15251 g / 149.6 N
|
91.50 kg / 201.73 lbs
~0 Gs
|
| 20 mm |
52.00 kg / 114.64 lbs
5 665 Gs
|
7.80 kg / 17.20 lbs
7800 g / 76.5 N
|
46.80 kg / 103.18 lbs
~0 Gs
|
| 50 mm |
6.64 kg / 14.64 lbs
2 025 Gs
|
1.00 kg / 2.20 lbs
996 g / 9.8 N
|
5.98 kg / 13.18 lbs
~0 Gs
|
| 60 mm |
3.59 kg / 7.92 lbs
1 489 Gs
|
0.54 kg / 1.19 lbs
539 g / 5.3 N
|
3.23 kg / 7.13 lbs
~0 Gs
|
| 70 mm |
2.03 kg / 4.48 lbs
1 120 Gs
|
0.30 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.03 lbs
~0 Gs
|
| 80 mm |
1.20 kg / 2.64 lbs
860 Gs
|
0.18 kg / 0.40 lbs
180 g / 1.8 N
|
1.08 kg / 2.38 lbs
~0 Gs
|
| 90 mm |
0.73 kg / 1.62 lbs
673 Gs
|
0.11 kg / 0.24 lbs
110 g / 1.1 N
|
0.66 kg / 1.46 lbs
~0 Gs
|
| 100 mm |
0.47 kg / 1.03 lbs
536 Gs
|
0.07 kg / 0.15 lbs
70 g / 0.7 N
|
0.42 kg / 0.92 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 40x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 40x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.84 km/h
(4.68 m/s)
|
0.39 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
0.87 J | |
| 50 mm |
32.33 km/h
(8.98 m/s)
|
1.43 J | |
| 100 mm |
45.65 km/h
(12.68 m/s)
|
2.84 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 40x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 40x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 325 Mx | 563.3 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 40x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.24 kg | Standard |
| Woda (dno rzeki) |
8.29 kg
(+1.05 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi tylko ~1% (teoretycznie).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) zyskują nowoczesny, metaliczny wygląd.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (brak farby)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans (między magnesem a metalem), bowiem nawet bardzo mała przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt przyłożenia siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Chronić przed dziećmi
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Nie wierć w magnesach
Pył generowany podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zagrożenie dla elektroniki
Bardzo silne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Rozprysk materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Smartfony i tablety
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
