MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030192
GTIN/EAN: 5906301812098
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
27 mm [±0,1 mm]
Waga
95.43 g
Kierunek magnesowania
↑ osiowy
Udźwig
18.51 kg / 181.54 N
Indukcja magnetyczna
562.34 mT / 5623 Gs
Powłoka
[NiCuNi] nikiel
47.18 ZŁ z VAT / szt. + cena za transport
38.36 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo pisz za pomocą
formularz zapytania
na stronie kontaktowej.
Parametry i budowę magnesu sprawdzisz u nas w
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030192 |
| GTIN/EAN | 5906301812098 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 27 mm [±0,1 mm] |
| Waga | 95.43 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 18.51 kg / 181.54 N |
| Indukcja magnetyczna ~ ? | 562.34 mT / 5623 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Niniejsze wartości są wynik analizy fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MP 25x5x27 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5716 Gs
571.6 mT
|
18.51 kg / 40.81 lbs
18510.0 g / 181.6 N
|
niebezpieczny! |
| 1 mm |
5288 Gs
528.8 mT
|
15.84 kg / 34.92 lbs
15839.8 g / 155.4 N
|
niebezpieczny! |
| 2 mm |
4861 Gs
486.1 mT
|
13.38 kg / 29.51 lbs
13384.0 g / 131.3 N
|
niebezpieczny! |
| 3 mm |
4446 Gs
444.6 mT
|
11.20 kg / 24.69 lbs
11198.0 g / 109.9 N
|
niebezpieczny! |
| 5 mm |
3677 Gs
367.7 mT
|
7.66 kg / 16.88 lbs
7657.5 g / 75.1 N
|
mocny |
| 10 mm |
2216 Gs
221.6 mT
|
2.78 kg / 6.13 lbs
2782.1 g / 27.3 N
|
mocny |
| 15 mm |
1354 Gs
135.4 mT
|
1.04 kg / 2.29 lbs
1037.8 g / 10.2 N
|
niskie ryzyko |
| 20 mm |
864 Gs
86.4 mT
|
0.42 kg / 0.93 lbs
423.3 g / 4.2 N
|
niskie ryzyko |
| 30 mm |
405 Gs
40.5 mT
|
0.09 kg / 0.21 lbs
93.1 g / 0.9 N
|
niskie ryzyko |
| 50 mm |
133 Gs
13.3 mT
|
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MP 25x5x27 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.70 kg / 8.16 lbs
3702.0 g / 36.3 N
|
| 1 mm | Stal (~0.2) |
3.17 kg / 6.98 lbs
3168.0 g / 31.1 N
|
| 2 mm | Stal (~0.2) |
2.68 kg / 5.90 lbs
2676.0 g / 26.3 N
|
| 3 mm | Stal (~0.2) |
2.24 kg / 4.94 lbs
2240.0 g / 22.0 N
|
| 5 mm | Stal (~0.2) |
1.53 kg / 3.38 lbs
1532.0 g / 15.0 N
|
| 10 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
556.0 g / 5.5 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 0.46 lbs
208.0 g / 2.0 N
|
| 20 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 25x5x27 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.55 kg / 12.24 lbs
5553.0 g / 54.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.70 kg / 8.16 lbs
3702.0 g / 36.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.85 kg / 4.08 lbs
1851.0 g / 18.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.26 kg / 20.40 lbs
9255.0 g / 90.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 25x5x27 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.04 lbs
925.5 g / 9.1 N
|
| 1 mm |
|
2.31 kg / 5.10 lbs
2313.8 g / 22.7 N
|
| 2 mm |
|
4.63 kg / 10.20 lbs
4627.5 g / 45.4 N
|
| 3 mm |
|
6.94 kg / 15.30 lbs
6941.3 g / 68.1 N
|
| 5 mm |
|
11.57 kg / 25.50 lbs
11568.8 g / 113.5 N
|
| 10 mm |
|
18.51 kg / 40.81 lbs
18510.0 g / 181.6 N
|
| 11 mm |
|
18.51 kg / 40.81 lbs
18510.0 g / 181.6 N
|
| 12 mm |
|
18.51 kg / 40.81 lbs
18510.0 g / 181.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MP 25x5x27 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.51 kg / 40.81 lbs
18510.0 g / 181.6 N
|
OK |
| 40 °C | -2.2% |
18.10 kg / 39.91 lbs
18102.8 g / 177.6 N
|
OK |
| 60 °C | -4.4% |
17.70 kg / 39.01 lbs
17695.6 g / 173.6 N
|
OK |
| 80 °C | -6.6% |
17.29 kg / 38.11 lbs
17288.3 g / 169.6 N
|
|
| 100 °C | -28.8% |
13.18 kg / 29.05 lbs
13179.1 g / 129.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 25x5x27 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.99 kg / 30.83 lbs
6 064 Gs
|
2.10 kg / 4.62 lbs
2098 g / 20.6 N
|
N/A |
| 1 mm |
12.97 kg / 28.59 lbs
11 008 Gs
|
1.94 kg / 4.29 lbs
1945 g / 19.1 N
|
11.67 kg / 25.73 lbs
~0 Gs
|
| 2 mm |
11.97 kg / 26.39 lbs
10 576 Gs
|
1.80 kg / 3.96 lbs
1795 g / 17.6 N
|
10.77 kg / 23.75 lbs
~0 Gs
|
| 3 mm |
11.02 kg / 24.29 lbs
10 146 Gs
|
1.65 kg / 3.64 lbs
1652 g / 16.2 N
|
9.91 kg / 21.86 lbs
~0 Gs
|
| 5 mm |
9.26 kg / 20.42 lbs
9 303 Gs
|
1.39 kg / 3.06 lbs
1389 g / 13.6 N
|
8.33 kg / 18.37 lbs
~0 Gs
|
| 10 mm |
5.79 kg / 12.76 lbs
7 353 Gs
|
0.87 kg / 1.91 lbs
868 g / 8.5 N
|
5.21 kg / 11.48 lbs
~0 Gs
|
| 20 mm |
2.10 kg / 4.63 lbs
4 432 Gs
|
0.32 kg / 0.70 lbs
315 g / 3.1 N
|
1.89 kg / 4.17 lbs
~0 Gs
|
| 50 mm |
0.14 kg / 0.32 lbs
1 159 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.16 lbs
811 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.08 lbs
589 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
440 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
338 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
265 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 25x5x27 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 25x5x27 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.31 km/h
(4.25 m/s)
|
0.86 J | |
| 30 mm |
24.40 km/h
(6.78 m/s)
|
2.19 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
3.63 J | |
| 100 mm |
44.42 km/h
(12.34 m/s)
|
7.26 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 25x5x27 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 25x5x27 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 917 Mx | 49.2 µWb |
| Współczynnik Pc | 1.40 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 25x5x27 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 18.51 kg | Standard |
| Woda (dno rzeki) |
21.19 kg
(+2.68 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Dystans (pomiędzy magnesem a blachą), gdyż nawet bardzo mała przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Kompas i GPS
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Przegrzanie magnesu
Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Bezpieczna praca
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Ostrzeżenie dla alergików
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Siła zgniatająca
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ryzyko pęknięcia
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Chronić przed dziećmi
Te produkty magnetyczne nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Ostrzeżenie dla sercowców
Pacjenci z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Zagrożenie wybuchem pyłu
Proszek powstający podczas szlifowania magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
