MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030192
GTIN/EAN: 5906301812098
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
27 mm [±0,1 mm]
Waga
95.43 g
Kierunek magnesowania
↑ osiowy
Udźwig
18.51 kg / 181.54 N
Indukcja magnetyczna
562.34 mT / 5623 Gs
Powłoka
[NiCuNi] nikiel
47.18 ZŁ z VAT / szt. + cena za transport
38.36 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość przez
formularz zapytania
w sekcji kontakt.
Udźwig a także wygląd magnesów neodymowych sprawdzisz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Dane - MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030192 |
| GTIN/EAN | 5906301812098 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 27 mm [±0,1 mm] |
| Waga | 95.43 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 18.51 kg / 181.54 N |
| Indukcja magnetyczna ~ ? | 562.34 mT / 5623 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości są bezpośredni efekt symulacji matematycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MP 25x5x27 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5716 Gs
571.6 mT
|
18.51 kg / 18510.0 g
181.6 N
|
miażdżący |
| 1 mm |
5288 Gs
528.8 mT
|
15.84 kg / 15839.8 g
155.4 N
|
miażdżący |
| 2 mm |
4861 Gs
486.1 mT
|
13.38 kg / 13384.0 g
131.3 N
|
miażdżący |
| 3 mm |
4446 Gs
444.6 mT
|
11.20 kg / 11198.0 g
109.9 N
|
miażdżący |
| 5 mm |
3677 Gs
367.7 mT
|
7.66 kg / 7657.5 g
75.1 N
|
mocny |
| 10 mm |
2216 Gs
221.6 mT
|
2.78 kg / 2782.1 g
27.3 N
|
mocny |
| 15 mm |
1354 Gs
135.4 mT
|
1.04 kg / 1037.8 g
10.2 N
|
bezpieczny |
| 20 mm |
864 Gs
86.4 mT
|
0.42 kg / 423.3 g
4.2 N
|
bezpieczny |
| 30 mm |
405 Gs
40.5 mT
|
0.09 kg / 93.1 g
0.9 N
|
bezpieczny |
| 50 mm |
133 Gs
13.3 mT
|
0.01 kg / 10.0 g
0.1 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 25x5x27 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.70 kg / 3702.0 g
36.3 N
|
| 1 mm | Stal (~0.2) |
3.17 kg / 3168.0 g
31.1 N
|
| 2 mm | Stal (~0.2) |
2.68 kg / 2676.0 g
26.3 N
|
| 3 mm | Stal (~0.2) |
2.24 kg / 2240.0 g
22.0 N
|
| 5 mm | Stal (~0.2) |
1.53 kg / 1532.0 g
15.0 N
|
| 10 mm | Stal (~0.2) |
0.56 kg / 556.0 g
5.5 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 208.0 g
2.0 N
|
| 20 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 25x5x27 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.55 kg / 5553.0 g
54.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.70 kg / 3702.0 g
36.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.85 kg / 1851.0 g
18.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.26 kg / 9255.0 g
90.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 25x5x27 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 925.5 g
9.1 N
|
| 1 mm |
|
2.31 kg / 2313.8 g
22.7 N
|
| 2 mm |
|
4.63 kg / 4627.5 g
45.4 N
|
| 5 mm |
|
11.57 kg / 11568.8 g
113.5 N
|
| 10 mm |
|
18.51 kg / 18510.0 g
181.6 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MP 25x5x27 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.51 kg / 18510.0 g
181.6 N
|
OK |
| 40 °C | -2.2% |
18.10 kg / 18102.8 g
177.6 N
|
OK |
| 60 °C | -4.4% |
17.70 kg / 17695.6 g
173.6 N
|
OK |
| 80 °C | -6.6% |
17.29 kg / 17288.3 g
169.6 N
|
|
| 100 °C | -28.8% |
13.18 kg / 13179.1 g
129.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 25x5x27 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
13.99 kg / 13986 g
137.2 N
6 064 Gs
|
N/A |
| 1 mm |
12.97 kg / 12966 g
127.2 N
11 008 Gs
|
11.67 kg / 11670 g
114.5 N
~0 Gs
|
| 2 mm |
11.97 kg / 11968 g
117.4 N
10 576 Gs
|
10.77 kg / 10771 g
105.7 N
~0 Gs
|
| 3 mm |
11.02 kg / 11016 g
108.1 N
10 146 Gs
|
9.91 kg / 9914 g
97.3 N
~0 Gs
|
| 5 mm |
9.26 kg / 9260 g
90.8 N
9 303 Gs
|
8.33 kg / 8334 g
81.8 N
~0 Gs
|
| 10 mm |
5.79 kg / 5786 g
56.8 N
7 353 Gs
|
5.21 kg / 5207 g
51.1 N
~0 Gs
|
| 20 mm |
2.10 kg / 2102 g
20.6 N
4 432 Gs
|
1.89 kg / 1892 g
18.6 N
~0 Gs
|
| 50 mm |
0.14 kg / 144 g
1.4 N
1 159 Gs
|
0.13 kg / 129 g
1.3 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 25x5x27 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 25x5x27 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.31 km/h
(4.25 m/s)
|
0.86 J | |
| 30 mm |
24.40 km/h
(6.78 m/s)
|
2.19 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
3.63 J | |
| 100 mm |
44.42 km/h
(12.34 m/s)
|
7.26 J |
Tabela 9: Parametry powłoki (trwałość)
MP 25x5x27 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 25x5x27 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 917 Mx | 49.2 µWb |
| Współczynnik Pc | 1.40 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 25x5x27 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 18.51 kg | Standard |
| Woda (dno rzeki) |
21.19 kg
(+2.68 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) mają estetyczny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
Zasady BHP dla użytkowników magnesów
Uszkodzenia czujników
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Trwała utrata siły
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Ryzyko pęknięcia
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Uczulenie na powłokę
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
