MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030192
GTIN/EAN: 5906301812098
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
27 mm [±0,1 mm]
Waga
95.43 g
Kierunek magnesowania
↑ osiowy
Udźwig
18.51 kg / 181.54 N
Indukcja magnetyczna
562.34 mT / 5623 Gs
Powłoka
[NiCuNi] nikiel
47.18 ZŁ z VAT / szt. + cena za transport
38.36 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie daj znać poprzez
nasz formularz online
przez naszą stronę.
Moc oraz kształt magnesu neodymowego przetestujesz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 25x5x27 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030192 |
| GTIN/EAN | 5906301812098 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 27 mm [±0,1 mm] |
| Waga | 95.43 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 18.51 kg / 181.54 N |
| Indukcja magnetyczna ~ ? | 562.34 mT / 5623 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - raport
Poniższe informacje są bezpośredni efekt symulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MP 25x5x27 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5716 Gs
571.6 mT
|
18.51 kg / 18510.0 g
181.6 N
|
krytyczny poziom |
| 1 mm |
5288 Gs
528.8 mT
|
15.84 kg / 15839.8 g
155.4 N
|
krytyczny poziom |
| 2 mm |
4861 Gs
486.1 mT
|
13.38 kg / 13384.0 g
131.3 N
|
krytyczny poziom |
| 3 mm |
4446 Gs
444.6 mT
|
11.20 kg / 11198.0 g
109.9 N
|
krytyczny poziom |
| 5 mm |
3677 Gs
367.7 mT
|
7.66 kg / 7657.5 g
75.1 N
|
uwaga |
| 10 mm |
2216 Gs
221.6 mT
|
2.78 kg / 2782.1 g
27.3 N
|
uwaga |
| 15 mm |
1354 Gs
135.4 mT
|
1.04 kg / 1037.8 g
10.2 N
|
bezpieczny |
| 20 mm |
864 Gs
86.4 mT
|
0.42 kg / 423.3 g
4.2 N
|
bezpieczny |
| 30 mm |
405 Gs
40.5 mT
|
0.09 kg / 93.1 g
0.9 N
|
bezpieczny |
| 50 mm |
133 Gs
13.3 mT
|
0.01 kg / 10.0 g
0.1 N
|
bezpieczny |
MP 25x5x27 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.70 kg / 3702.0 g
36.3 N
|
| 1 mm | Stal (~0.2) |
3.17 kg / 3168.0 g
31.1 N
|
| 2 mm | Stal (~0.2) |
2.68 kg / 2676.0 g
26.3 N
|
| 3 mm | Stal (~0.2) |
2.24 kg / 2240.0 g
22.0 N
|
| 5 mm | Stal (~0.2) |
1.53 kg / 1532.0 g
15.0 N
|
| 10 mm | Stal (~0.2) |
0.56 kg / 556.0 g
5.5 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 208.0 g
2.0 N
|
| 20 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MP 25x5x27 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.55 kg / 5553.0 g
54.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.70 kg / 3702.0 g
36.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.85 kg / 1851.0 g
18.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.26 kg / 9255.0 g
90.8 N
|
MP 25x5x27 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 925.5 g
9.1 N
|
| 1 mm |
|
2.31 kg / 2313.8 g
22.7 N
|
| 2 mm |
|
4.63 kg / 4627.5 g
45.4 N
|
| 5 mm |
|
11.57 kg / 11568.8 g
113.5 N
|
| 10 mm |
|
18.51 kg / 18510.0 g
181.6 N
|
MP 25x5x27 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.51 kg / 18510.0 g
181.6 N
|
OK |
| 40 °C | -2.2% |
18.10 kg / 18102.8 g
177.6 N
|
OK |
| 60 °C | -4.4% |
17.70 kg / 17695.6 g
173.6 N
|
OK |
| 80 °C | -6.6% |
17.29 kg / 17288.3 g
169.6 N
|
|
| 100 °C | -28.8% |
13.18 kg / 13179.1 g
129.3 N
|
MP 25x5x27 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
13.99 kg / 13986 g
137.2 N
6 064 Gs
|
N/A |
| 1 mm |
12.97 kg / 12966 g
127.2 N
11 008 Gs
|
11.67 kg / 11670 g
114.5 N
~0 Gs
|
| 2 mm |
11.97 kg / 11968 g
117.4 N
10 576 Gs
|
10.77 kg / 10771 g
105.7 N
~0 Gs
|
| 3 mm |
11.02 kg / 11016 g
108.1 N
10 146 Gs
|
9.91 kg / 9914 g
97.3 N
~0 Gs
|
| 5 mm |
9.26 kg / 9260 g
90.8 N
9 303 Gs
|
8.33 kg / 8334 g
81.8 N
~0 Gs
|
| 10 mm |
5.79 kg / 5786 g
56.8 N
7 353 Gs
|
5.21 kg / 5207 g
51.1 N
~0 Gs
|
| 20 mm |
2.10 kg / 2102 g
20.6 N
4 432 Gs
|
1.89 kg / 1892 g
18.6 N
~0 Gs
|
| 50 mm |
0.14 kg / 144 g
1.4 N
1 159 Gs
|
0.13 kg / 129 g
1.3 N
~0 Gs
|
MP 25x5x27 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MP 25x5x27 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.31 km/h
(4.25 m/s)
|
0.86 J | |
| 30 mm |
24.40 km/h
(6.78 m/s)
|
2.19 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
3.63 J | |
| 100 mm |
44.42 km/h
(12.34 m/s)
|
7.26 J |
MP 25x5x27 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 25x5x27 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 917 Mx | 49.2 µWb |
| Współczynnik Pc | 1.40 | Wysoki (Stabilny) |
MP 25x5x27 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 18.51 kg | Standard |
| Woda (dno rzeki) |
21.19 kg
(+2.68 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- o wypolerowanej powierzchni kontaktu
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Ostrzeżenie dla alergików
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Rozruszniki serca
Pacjenci z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać działanie implantu.
Tylko dla dorosłych
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Trwała utrata siły
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Ryzyko zmiażdżenia
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Nie wierć w magnesach
Pył generowany podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Moc przyciągania
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
