MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030191
GTIN/EAN: 5906301812081
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
21.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.49 kg / 102.90 N
Indukcja magnetyczna
334.09 mT / 3341 Gs
Powłoka
[NiCuNi] nikiel
13.53 ZŁ z VAT / szt. + cena za transport
11.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo skontaktuj się przez
nasz formularz online
przez naszą stronę.
Parametry a także kształt magnesu neodymowego skontrolujesz w naszym
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030191 |
| GTIN/EAN | 5906301812081 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 21.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.49 kg / 102.90 N |
| Indukcja magnetyczna ~ ? | 334.09 mT / 3341 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione dane stanowią bezpośredni efekt analizy matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 25x13x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
niebezpieczny! |
| 1 mm |
5310 Gs
531.0 mT
|
8.86 kg / 19.54 lbs
8861.7 g / 86.9 N
|
średnie ryzyko |
| 2 mm |
4846 Gs
484.6 mT
|
7.38 kg / 16.27 lbs
7379.4 g / 72.4 N
|
średnie ryzyko |
| 3 mm |
4397 Gs
439.7 mT
|
6.08 kg / 13.40 lbs
6077.4 g / 59.6 N
|
średnie ryzyko |
| 5 mm |
3576 Gs
357.6 mT
|
4.02 kg / 8.86 lbs
4019.0 g / 39.4 N
|
średnie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
1.35 kg / 2.98 lbs
1350.2 g / 13.2 N
|
niskie ryzyko |
| 15 mm |
1231 Gs
123.1 mT
|
0.48 kg / 1.05 lbs
476.4 g / 4.7 N
|
niskie ryzyko |
| 20 mm |
773 Gs
77.3 mT
|
0.19 kg / 0.41 lbs
187.6 g / 1.8 N
|
niskie ryzyko |
| 30 mm |
356 Gs
35.6 mT
|
0.04 kg / 0.09 lbs
39.8 g / 0.4 N
|
niskie ryzyko |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 25x13x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.10 kg / 4.63 lbs
2098.0 g / 20.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.91 lbs
1772.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 3.25 lbs
1476.0 g / 14.5 N
|
| 3 mm | Stal (~0.2) |
1.22 kg / 2.68 lbs
1216.0 g / 11.9 N
|
| 5 mm | Stal (~0.2) |
0.80 kg / 1.77 lbs
804.0 g / 7.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 25x13x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.15 kg / 6.94 lbs
3147.0 g / 30.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.10 kg / 4.63 lbs
2098.0 g / 20.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.05 kg / 2.31 lbs
1049.0 g / 10.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.25 kg / 11.56 lbs
5245.0 g / 51.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 25x13x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 1.16 lbs
524.5 g / 5.1 N
|
| 1 mm |
|
1.31 kg / 2.89 lbs
1311.3 g / 12.9 N
|
| 2 mm |
|
2.62 kg / 5.78 lbs
2622.5 g / 25.7 N
|
| 3 mm |
|
3.93 kg / 8.67 lbs
3933.8 g / 38.6 N
|
| 5 mm |
|
6.56 kg / 14.45 lbs
6556.3 g / 64.3 N
|
| 10 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
| 11 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
| 12 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MP 25x13x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
OK |
| 40 °C | -2.2% |
10.26 kg / 22.62 lbs
10259.2 g / 100.6 N
|
OK |
| 60 °C | -4.4% |
10.03 kg / 22.11 lbs
10028.4 g / 98.4 N
|
OK |
| 80 °C | -6.6% |
9.80 kg / 21.60 lbs
9797.7 g / 96.1 N
|
|
| 100 °C | -28.8% |
7.47 kg / 16.47 lbs
7468.9 g / 73.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 25x13x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
77.07 kg / 169.90 lbs
6 082 Gs
|
11.56 kg / 25.49 lbs
11560 g / 113.4 N
|
N/A |
| 1 mm |
71.01 kg / 156.55 lbs
11 091 Gs
|
10.65 kg / 23.48 lbs
10652 g / 104.5 N
|
63.91 kg / 140.90 lbs
~0 Gs
|
| 2 mm |
65.10 kg / 143.53 lbs
10 620 Gs
|
9.77 kg / 21.53 lbs
9766 g / 95.8 N
|
58.59 kg / 129.18 lbs
~0 Gs
|
| 3 mm |
59.50 kg / 131.17 lbs
10 153 Gs
|
8.92 kg / 19.68 lbs
8925 g / 87.6 N
|
53.55 kg / 118.06 lbs
~0 Gs
|
| 5 mm |
49.26 kg / 108.61 lbs
9 238 Gs
|
7.39 kg / 16.29 lbs
7389 g / 72.5 N
|
44.34 kg / 97.74 lbs
~0 Gs
|
| 10 mm |
29.53 kg / 65.10 lbs
7 152 Gs
|
4.43 kg / 9.76 lbs
4429 g / 43.4 N
|
26.57 kg / 58.59 lbs
~0 Gs
|
| 20 mm |
9.92 kg / 21.87 lbs
4 145 Gs
|
1.49 kg / 3.28 lbs
1488 g / 14.6 N
|
8.93 kg / 19.68 lbs
~0 Gs
|
| 50 mm |
0.61 kg / 1.33 lbs
1 024 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.54 kg / 1.20 lbs
~0 Gs
|
| 60 mm |
0.29 kg / 0.64 lbs
712 Gs
|
0.04 kg / 0.10 lbs
44 g / 0.4 N
|
0.26 kg / 0.58 lbs
~0 Gs
|
| 70 mm |
0.15 kg / 0.34 lbs
514 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.30 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.19 lbs
383 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
293 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 25x13x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MP 25x13x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.01 km/h
(6.67 m/s)
|
0.48 J | |
| 30 mm |
38.68 km/h
(10.75 m/s)
|
1.24 J | |
| 50 mm |
49.84 km/h
(13.84 m/s)
|
2.06 J | |
| 100 mm |
70.46 km/h
(19.57 m/s)
|
4.12 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x13x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 25x13x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 118 Mx | 231.2 µWb |
| Współczynnik Pc | 1.04 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 25x13x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.49 kg | Standard |
| Woda (dno rzeki) |
12.01 kg
(+1.52 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.04
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki powłoce (nikiel, złoto, Ag) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- z użyciem podłoża ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- o grubości przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- przy całkowitym braku odstępu (brak powłok)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Bezpieczna praca przy magnesach z neodymem
Interferencja medyczna
Pacjenci z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Temperatura pracy
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Wpływ na smartfony
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Zagrożenie dla elektroniki
Bardzo silne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Uczulenie na powłokę
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może skutkować wysypkę. Zalecamy noszenie rękawiczek ochronnych.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od dzieci i zwierząt.
Łatwopalność
Pył generowany podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.
Uwaga na odpryski
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
