MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030191
GTIN/EAN: 5906301812081
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
21.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.49 kg / 102.90 N
Indukcja magnetyczna
334.09 mT / 3341 Gs
Powłoka
[NiCuNi] nikiel
13.53 ZŁ z VAT / szt. + cena za transport
11.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się korzystając z
formularz zgłoszeniowy
na naszej stronie.
Masę a także kształt magnesów zobaczysz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030191 |
| GTIN/EAN | 5906301812081 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 21.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.49 kg / 102.90 N |
| Indukcja magnetyczna ~ ? | 334.09 mT / 3341 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze dane są bezpośredni efekt symulacji matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MP 25x13x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
krytyczny poziom |
| 1 mm |
5310 Gs
531.0 mT
|
8.86 kg / 19.54 lbs
8861.7 g / 86.9 N
|
mocny |
| 2 mm |
4846 Gs
484.6 mT
|
7.38 kg / 16.27 lbs
7379.4 g / 72.4 N
|
mocny |
| 3 mm |
4397 Gs
439.7 mT
|
6.08 kg / 13.40 lbs
6077.4 g / 59.6 N
|
mocny |
| 5 mm |
3576 Gs
357.6 mT
|
4.02 kg / 8.86 lbs
4019.0 g / 39.4 N
|
mocny |
| 10 mm |
2073 Gs
207.3 mT
|
1.35 kg / 2.98 lbs
1350.2 g / 13.2 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.48 kg / 1.05 lbs
476.4 g / 4.7 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.19 kg / 0.41 lbs
187.6 g / 1.8 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.04 kg / 0.09 lbs
39.8 g / 0.4 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 25x13x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.10 kg / 4.63 lbs
2098.0 g / 20.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.91 lbs
1772.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 3.25 lbs
1476.0 g / 14.5 N
|
| 3 mm | Stal (~0.2) |
1.22 kg / 2.68 lbs
1216.0 g / 11.9 N
|
| 5 mm | Stal (~0.2) |
0.80 kg / 1.77 lbs
804.0 g / 7.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 25x13x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.15 kg / 6.94 lbs
3147.0 g / 30.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.10 kg / 4.63 lbs
2098.0 g / 20.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.05 kg / 2.31 lbs
1049.0 g / 10.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.25 kg / 11.56 lbs
5245.0 g / 51.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 25x13x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 1.16 lbs
524.5 g / 5.1 N
|
| 1 mm |
|
1.31 kg / 2.89 lbs
1311.3 g / 12.9 N
|
| 2 mm |
|
2.62 kg / 5.78 lbs
2622.5 g / 25.7 N
|
| 3 mm |
|
3.93 kg / 8.67 lbs
3933.8 g / 38.6 N
|
| 5 mm |
|
6.56 kg / 14.45 lbs
6556.3 g / 64.3 N
|
| 10 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
| 11 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
| 12 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MP 25x13x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
OK |
| 40 °C | -2.2% |
10.26 kg / 22.62 lbs
10259.2 g / 100.6 N
|
OK |
| 60 °C | -4.4% |
10.03 kg / 22.11 lbs
10028.4 g / 98.4 N
|
OK |
| 80 °C | -6.6% |
9.80 kg / 21.60 lbs
9797.7 g / 96.1 N
|
|
| 100 °C | -28.8% |
7.47 kg / 16.47 lbs
7468.9 g / 73.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 25x13x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
77.07 kg / 169.90 lbs
6 082 Gs
|
11.56 kg / 25.49 lbs
11560 g / 113.4 N
|
N/A |
| 1 mm |
71.01 kg / 156.55 lbs
11 091 Gs
|
10.65 kg / 23.48 lbs
10652 g / 104.5 N
|
63.91 kg / 140.90 lbs
~0 Gs
|
| 2 mm |
65.10 kg / 143.53 lbs
10 620 Gs
|
9.77 kg / 21.53 lbs
9766 g / 95.8 N
|
58.59 kg / 129.18 lbs
~0 Gs
|
| 3 mm |
59.50 kg / 131.17 lbs
10 153 Gs
|
8.92 kg / 19.68 lbs
8925 g / 87.6 N
|
53.55 kg / 118.06 lbs
~0 Gs
|
| 5 mm |
49.26 kg / 108.61 lbs
9 238 Gs
|
7.39 kg / 16.29 lbs
7389 g / 72.5 N
|
44.34 kg / 97.74 lbs
~0 Gs
|
| 10 mm |
29.53 kg / 65.10 lbs
7 152 Gs
|
4.43 kg / 9.76 lbs
4429 g / 43.4 N
|
26.57 kg / 58.59 lbs
~0 Gs
|
| 20 mm |
9.92 kg / 21.87 lbs
4 145 Gs
|
1.49 kg / 3.28 lbs
1488 g / 14.6 N
|
8.93 kg / 19.68 lbs
~0 Gs
|
| 50 mm |
0.61 kg / 1.33 lbs
1 024 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.54 kg / 1.20 lbs
~0 Gs
|
| 60 mm |
0.29 kg / 0.64 lbs
712 Gs
|
0.04 kg / 0.10 lbs
44 g / 0.4 N
|
0.26 kg / 0.58 lbs
~0 Gs
|
| 70 mm |
0.15 kg / 0.34 lbs
514 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.30 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.19 lbs
383 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
293 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 25x13x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 25x13x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.01 km/h
(6.67 m/s)
|
0.48 J | |
| 30 mm |
38.68 km/h
(10.75 m/s)
|
1.24 J | |
| 50 mm |
49.84 km/h
(13.84 m/s)
|
2.06 J | |
| 100 mm |
70.46 km/h
(19.57 m/s)
|
4.12 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 25x13x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 25x13x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 118 Mx | 231.2 µWb |
| Współczynnik Pc | 1.04 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 25x13x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.49 kg | Standard |
| Woda (dno rzeki) |
12.01 kg
(+1.52 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.04
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z wykorzystaniem płyty ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o idealnie gładkiej powierzchni styku
- przy bezpośrednim styku (bez powłok)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje udźwig.
Bezpieczna praca przy magnesach neodymowych
Ostrzeżenie dla sercowców
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Nośniki danych
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Kruchy spiek
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Ostrzeżenie dla alergików
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Zagrożenie wybuchem pyłu
Pył powstający podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Niebezpieczeństwo przytrzaśnięcia
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ogromna siła
Stosuj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
