MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030191
GTIN: 5906301812081
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
21.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.49 kg / 102.90 N
Indukcja magnetyczna
334.09 mT / 3341 Gs
Powłoka
[NiCuNi] nikiel
13.53 ZŁ z VAT / szt. + cena za transport
11.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Dzwoń do nas
+48 888 99 98 98
lub skontaktuj się poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Parametry a także formę magnesów neodymowych przetestujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030191 |
| GTIN | 5906301812081 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 21.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.49 kg / 102.90 N |
| Indukcja magnetyczna ~ ? | 334.09 mT / 3341 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Poniższe informacje są wynik symulacji matematycznej. Wyniki bazują na algorytmach dla klasy NdFeB. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
MP 25x13x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
10.49 kg / 10490.0 g
102.9 N
|
miażdżący |
| 1 mm |
5310 Gs
531.0 mT
|
8.86 kg / 8861.7 g
86.9 N
|
średnie ryzyko |
| 2 mm |
4846 Gs
484.6 mT
|
7.38 kg / 7379.4 g
72.4 N
|
średnie ryzyko |
| 3 mm |
4397 Gs
439.7 mT
|
6.08 kg / 6077.4 g
59.6 N
|
średnie ryzyko |
| 5 mm |
3576 Gs
357.6 mT
|
4.02 kg / 4019.0 g
39.4 N
|
średnie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
1.35 kg / 1350.2 g
13.2 N
|
słaby uchwyt |
| 15 mm |
1231 Gs
123.1 mT
|
0.48 kg / 476.4 g
4.7 N
|
słaby uchwyt |
| 20 mm |
773 Gs
77.3 mT
|
0.19 kg / 187.6 g
1.8 N
|
słaby uchwyt |
| 30 mm |
356 Gs
35.6 mT
|
0.04 kg / 39.8 g
0.4 N
|
słaby uchwyt |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 4.1 g
0.0 N
|
słaby uchwyt |
MP 25x13x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.10 kg / 2098.0 g
20.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 1772.0 g
17.4 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 1476.0 g
14.5 N
|
| 3 mm | Stal (~0.2) |
1.22 kg / 1216.0 g
11.9 N
|
| 5 mm | Stal (~0.2) |
0.80 kg / 804.0 g
7.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 270.0 g
2.6 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 96.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 25x13x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.15 kg / 3147.0 g
30.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.10 kg / 2098.0 g
20.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.05 kg / 1049.0 g
10.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.25 kg / 5245.0 g
51.5 N
|
MP 25x13x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 524.5 g
5.1 N
|
| 1 mm |
|
1.31 kg / 1311.3 g
12.9 N
|
| 2 mm |
|
2.62 kg / 2622.5 g
25.7 N
|
| 5 mm |
|
6.56 kg / 6556.3 g
64.3 N
|
| 10 mm |
|
10.49 kg / 10490.0 g
102.9 N
|
MP 25x13x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.49 kg / 10490.0 g
102.9 N
|
OK |
| 40 °C | -2.2% |
10.26 kg / 10259.2 g
100.6 N
|
OK |
| 60 °C | -4.4% |
10.03 kg / 10028.4 g
98.4 N
|
OK |
| 80 °C | -6.6% |
9.80 kg / 9797.7 g
96.1 N
|
|
| 100 °C | -28.8% |
7.47 kg / 7468.9 g
73.3 N
|
MP 25x13x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
77.07 kg / 77067 g
756.0 N
6 082 Gs
|
N/A |
| 1 mm |
71.01 kg / 71011 g
696.6 N
11 091 Gs
|
63.91 kg / 63910 g
627.0 N
~0 Gs
|
| 2 mm |
65.10 kg / 65105 g
638.7 N
10 620 Gs
|
58.59 kg / 58594 g
574.8 N
~0 Gs
|
| 3 mm |
59.50 kg / 59500 g
583.7 N
10 153 Gs
|
53.55 kg / 53550 g
525.3 N
~0 Gs
|
| 5 mm |
49.26 kg / 49263 g
483.3 N
9 238 Gs
|
44.34 kg / 44336 g
434.9 N
~0 Gs
|
| 10 mm |
29.53 kg / 29527 g
289.7 N
7 152 Gs
|
26.57 kg / 26574 g
260.7 N
~0 Gs
|
| 20 mm |
9.92 kg / 9919 g
97.3 N
4 145 Gs
|
8.93 kg / 8927 g
87.6 N
~0 Gs
|
| 50 mm |
0.61 kg / 605 g
5.9 N
1 024 Gs
|
0.54 kg / 545 g
5.3 N
~0 Gs
|
MP 25x13x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MP 25x13x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.01 km/h
(6.67 m/s)
|
0.48 J | |
| 30 mm |
38.68 km/h
(10.75 m/s)
|
1.24 J | |
| 50 mm |
49.84 km/h
(13.84 m/s)
|
2.06 J | |
| 100 mm |
70.46 km/h
(19.57 m/s)
|
4.12 J |
MP 25x13x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 25x13x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 118 Mx | 231.2 µWb |
| Współczynnik Pc | 1.04 | Wysoki (Stabilny) |
MP 25x13x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.49 kg | Standard |
| Woda (dno rzeki) |
12.01 kg
(+1.52 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne produkty
Wady i zalety magnesów neodymowych NdFeB.
Poza niezwykłą energią, te produkty posiadają szereg innych zalet::
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Informacja o udźwigu została wyznaczona dla warunków idealnego styku, uwzględniającej:
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z płaszczyzną wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
Trzeba mieć na uwadze, że trzymanie magnesu będzie inne zależnie od następujących czynników, w kolejności ważności:
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość podłoża – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Wady i zalety magnesów neodymowych NdFeB.
Poza niezwykłą energią, te produkty posiadają szereg innych zalet::
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Informacja o udźwigu została wyznaczona dla warunków idealnego styku, uwzględniającej:
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z płaszczyzną wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
Trzeba mieć na uwadze, że trzymanie magnesu będzie inne zależnie od następujących czynników, w kolejności ważności:
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość podłoża – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Rozprysk materiału
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
To nie jest zabawka
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem niepowołanych osób.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Ochrona dłoni
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często szybciej niż zdążysz zareagować.
Interferencja magnetyczna
Silne pole magnetyczne zakłóca działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Nośniki danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Uwaga!
Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
