MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030394
GTIN/EAN: 5906301812319
Średnica
22 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
26.39 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.65 kg / 133.89 N
Indukcja magnetyczna
416.85 mT / 4168 Gs
Powłoka
[NiCuNi] nikiel
13.95 ZŁ z VAT / szt. + cena za transport
11.34 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz za pomocą
formularz zapytania
przez naszą stronę.
Właściwości i budowę magnesu wyliczysz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030394 |
| GTIN/EAN | 5906301812319 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 22 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 26.39 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.65 kg / 133.89 N |
| Indukcja magnetyczna ~ ? | 416.85 mT / 4168 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Poniższe wartości stanowią bezpośredni efekt analizy inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MP 22x6x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5864 Gs
586.4 mT
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
krytyczny poziom |
| 1 mm |
5326 Gs
532.6 mT
|
11.26 kg / 24.83 lbs
11261.1 g / 110.5 N
|
krytyczny poziom |
| 2 mm |
4795 Gs
479.5 mT
|
9.13 kg / 20.12 lbs
9127.3 g / 89.5 N
|
uwaga |
| 3 mm |
4288 Gs
428.8 mT
|
7.30 kg / 16.09 lbs
7299.8 g / 71.6 N
|
uwaga |
| 5 mm |
3381 Gs
338.1 mT
|
4.54 kg / 10.01 lbs
4539.0 g / 44.5 N
|
uwaga |
| 10 mm |
1830 Gs
183.0 mT
|
1.33 kg / 2.93 lbs
1329.4 g / 13.0 N
|
niskie ryzyko |
| 15 mm |
1039 Gs
103.9 mT
|
0.43 kg / 0.95 lbs
428.7 g / 4.2 N
|
niskie ryzyko |
| 20 mm |
635 Gs
63.5 mT
|
0.16 kg / 0.35 lbs
159.9 g / 1.6 N
|
niskie ryzyko |
| 30 mm |
285 Gs
28.5 mT
|
0.03 kg / 0.07 lbs
32.1 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.01 lbs
3.2 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 22x6x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| 1 mm | Stal (~0.2) |
2.25 kg / 4.96 lbs
2252.0 g / 22.1 N
|
| 2 mm | Stal (~0.2) |
1.83 kg / 4.03 lbs
1826.0 g / 17.9 N
|
| 3 mm | Stal (~0.2) |
1.46 kg / 3.22 lbs
1460.0 g / 14.3 N
|
| 5 mm | Stal (~0.2) |
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 22x6x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.10 kg / 9.03 lbs
4095.0 g / 40.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.37 kg / 3.01 lbs
1365.0 g / 13.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.83 kg / 15.05 lbs
6825.0 g / 67.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 22x6x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.68 kg / 1.50 lbs
682.5 g / 6.7 N
|
| 1 mm |
|
1.71 kg / 3.76 lbs
1706.3 g / 16.7 N
|
| 2 mm |
|
3.41 kg / 7.52 lbs
3412.5 g / 33.5 N
|
| 3 mm |
|
5.12 kg / 11.28 lbs
5118.8 g / 50.2 N
|
| 5 mm |
|
8.53 kg / 18.81 lbs
8531.3 g / 83.7 N
|
| 10 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
| 11 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
| 12 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 22x6x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
OK |
| 40 °C | -2.2% |
13.35 kg / 29.43 lbs
13349.7 g / 131.0 N
|
OK |
| 60 °C | -4.4% |
13.05 kg / 28.77 lbs
13049.4 g / 128.0 N
|
OK |
| 80 °C | -6.6% |
12.75 kg / 28.11 lbs
12749.1 g / 125.1 N
|
|
| 100 °C | -28.8% |
9.72 kg / 21.43 lbs
9718.8 g / 95.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 22x6x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.34 kg / 119.79 lbs
6 106 Gs
|
8.15 kg / 17.97 lbs
8151 g / 80.0 N
|
N/A |
| 1 mm |
49.50 kg / 109.14 lbs
11 193 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 2 mm |
44.83 kg / 98.83 lbs
10 652 Gs
|
6.72 kg / 14.82 lbs
6724 g / 66.0 N
|
40.34 kg / 88.94 lbs
~0 Gs
|
| 3 mm |
40.43 kg / 89.14 lbs
10 116 Gs
|
6.06 kg / 13.37 lbs
6065 g / 59.5 N
|
36.39 kg / 80.22 lbs
~0 Gs
|
| 5 mm |
32.54 kg / 71.74 lbs
9 075 Gs
|
4.88 kg / 10.76 lbs
4881 g / 47.9 N
|
29.29 kg / 64.57 lbs
~0 Gs
|
| 10 mm |
18.07 kg / 39.83 lbs
6 762 Gs
|
2.71 kg / 5.98 lbs
2710 g / 26.6 N
|
16.26 kg / 35.85 lbs
~0 Gs
|
| 20 mm |
5.29 kg / 11.67 lbs
3 660 Gs
|
0.79 kg / 1.75 lbs
794 g / 7.8 N
|
4.76 kg / 10.50 lbs
~0 Gs
|
| 50 mm |
0.27 kg / 0.60 lbs
828 Gs
|
0.04 kg / 0.09 lbs
41 g / 0.4 N
|
0.24 kg / 0.54 lbs
~0 Gs
|
| 60 mm |
0.13 kg / 0.28 lbs
569 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.25 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.15 lbs
408 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
303 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
231 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
180 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MP 22x6x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 22x6x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.29 km/h
(6.75 m/s)
|
0.60 J | |
| 30 mm |
39.79 km/h
(11.05 m/s)
|
1.61 J | |
| 50 mm |
51.30 km/h
(14.25 m/s)
|
2.68 J | |
| 100 mm |
72.53 km/h
(20.15 m/s)
|
5.36 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 22x6x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 22x6x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 465 Mx | 164.7 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 22x6x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.65 kg | Standard |
| Woda (dno rzeki) |
15.63 kg
(+1.98 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (pomiędzy magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Wektor obciążenia – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje udźwig.
BHP przy magnesach
Niebezpieczeństwo dla rozruszników
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może zatrzymać działanie implantu.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Nie wierć w magnesach
Proszek powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Bezpieczna praca
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj z dala od niepowołanych osób.
Rozprysk materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Uczulenie na powłokę
Pewna grupa użytkowników ma uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może wywołać silną reakcję alergiczną. Rekomendujemy używanie rękawic bezlateksowych.
Karty i dyski
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Limity termiczne
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
