MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030394
GTIN/EAN: 5906301812319
Średnica
22 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
26.39 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.65 kg / 133.89 N
Indukcja magnetyczna
416.85 mT / 4168 Gs
Powłoka
[NiCuNi] nikiel
13.95 ZŁ z VAT / szt. + cena za transport
11.34 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub zostaw wiadomość za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Moc i budowę magnesów neodymowych wyliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030394 |
| GTIN/EAN | 5906301812319 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 22 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 26.39 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.65 kg / 133.89 N |
| Indukcja magnetyczna ~ ? | 416.85 mT / 4168 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Niniejsze wartości stanowią wynik symulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MP 22x6x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5864 Gs
586.4 mT
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
niebezpieczny! |
| 1 mm |
5326 Gs
532.6 mT
|
11.26 kg / 24.83 lbs
11261.1 g / 110.5 N
|
niebezpieczny! |
| 2 mm |
4795 Gs
479.5 mT
|
9.13 kg / 20.12 lbs
9127.3 g / 89.5 N
|
średnie ryzyko |
| 3 mm |
4288 Gs
428.8 mT
|
7.30 kg / 16.09 lbs
7299.8 g / 71.6 N
|
średnie ryzyko |
| 5 mm |
3381 Gs
338.1 mT
|
4.54 kg / 10.01 lbs
4539.0 g / 44.5 N
|
średnie ryzyko |
| 10 mm |
1830 Gs
183.0 mT
|
1.33 kg / 2.93 lbs
1329.4 g / 13.0 N
|
bezpieczny |
| 15 mm |
1039 Gs
103.9 mT
|
0.43 kg / 0.95 lbs
428.7 g / 4.2 N
|
bezpieczny |
| 20 mm |
635 Gs
63.5 mT
|
0.16 kg / 0.35 lbs
159.9 g / 1.6 N
|
bezpieczny |
| 30 mm |
285 Gs
28.5 mT
|
0.03 kg / 0.07 lbs
32.1 g / 0.3 N
|
bezpieczny |
| 50 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.01 lbs
3.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MP 22x6x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| 1 mm | Stal (~0.2) |
2.25 kg / 4.96 lbs
2252.0 g / 22.1 N
|
| 2 mm | Stal (~0.2) |
1.83 kg / 4.03 lbs
1826.0 g / 17.9 N
|
| 3 mm | Stal (~0.2) |
1.46 kg / 3.22 lbs
1460.0 g / 14.3 N
|
| 5 mm | Stal (~0.2) |
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 22x6x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.10 kg / 9.03 lbs
4095.0 g / 40.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.37 kg / 3.01 lbs
1365.0 g / 13.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.83 kg / 15.05 lbs
6825.0 g / 67.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 22x6x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.68 kg / 1.50 lbs
682.5 g / 6.7 N
|
| 1 mm |
|
1.71 kg / 3.76 lbs
1706.3 g / 16.7 N
|
| 2 mm |
|
3.41 kg / 7.52 lbs
3412.5 g / 33.5 N
|
| 3 mm |
|
5.12 kg / 11.28 lbs
5118.8 g / 50.2 N
|
| 5 mm |
|
8.53 kg / 18.81 lbs
8531.3 g / 83.7 N
|
| 10 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
| 11 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
| 12 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MP 22x6x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
OK |
| 40 °C | -2.2% |
13.35 kg / 29.43 lbs
13349.7 g / 131.0 N
|
OK |
| 60 °C | -4.4% |
13.05 kg / 28.77 lbs
13049.4 g / 128.0 N
|
OK |
| 80 °C | -6.6% |
12.75 kg / 28.11 lbs
12749.1 g / 125.1 N
|
|
| 100 °C | -28.8% |
9.72 kg / 21.43 lbs
9718.8 g / 95.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 22x6x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.34 kg / 119.79 lbs
6 106 Gs
|
8.15 kg / 17.97 lbs
8151 g / 80.0 N
|
N/A |
| 1 mm |
49.50 kg / 109.14 lbs
11 193 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 2 mm |
44.83 kg / 98.83 lbs
10 652 Gs
|
6.72 kg / 14.82 lbs
6724 g / 66.0 N
|
40.34 kg / 88.94 lbs
~0 Gs
|
| 3 mm |
40.43 kg / 89.14 lbs
10 116 Gs
|
6.06 kg / 13.37 lbs
6065 g / 59.5 N
|
36.39 kg / 80.22 lbs
~0 Gs
|
| 5 mm |
32.54 kg / 71.74 lbs
9 075 Gs
|
4.88 kg / 10.76 lbs
4881 g / 47.9 N
|
29.29 kg / 64.57 lbs
~0 Gs
|
| 10 mm |
18.07 kg / 39.83 lbs
6 762 Gs
|
2.71 kg / 5.98 lbs
2710 g / 26.6 N
|
16.26 kg / 35.85 lbs
~0 Gs
|
| 20 mm |
5.29 kg / 11.67 lbs
3 660 Gs
|
0.79 kg / 1.75 lbs
794 g / 7.8 N
|
4.76 kg / 10.50 lbs
~0 Gs
|
| 50 mm |
0.27 kg / 0.60 lbs
828 Gs
|
0.04 kg / 0.09 lbs
41 g / 0.4 N
|
0.24 kg / 0.54 lbs
~0 Gs
|
| 60 mm |
0.13 kg / 0.28 lbs
569 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.25 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.15 lbs
408 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
303 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
231 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
180 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 22x6x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 22x6x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.29 km/h
(6.75 m/s)
|
0.60 J | |
| 30 mm |
39.79 km/h
(11.05 m/s)
|
1.61 J | |
| 50 mm |
51.30 km/h
(14.25 m/s)
|
2.68 J | |
| 100 mm |
72.53 km/h
(20.15 m/s)
|
5.36 J |
Tabela 9: Odporność na korozję
MP 22x6x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 22x6x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 465 Mx | 164.7 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 22x6x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.65 kg | Standard |
| Woda (dno rzeki) |
15.63 kg
(+1.98 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co się na to składa?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (brak zanieczyszczeń)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Zagrożenie dla najmłodszych
Te produkty magnetyczne nie służą do zabawy. Inhalacja kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Dla uczulonych
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Kompas i GPS
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Ryzyko zmiażdżenia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy wkładaj dłoni między dwa silne magnesy.
Samozapłon
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Uwaga medyczna
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Nie zbliżaj do komputera
Ekstremalne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
