MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030188
GTIN/EAN: 5906301812050
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
9.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.82 kg / 57.06 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
3.80 ZŁ z VAT / szt. + cena za transport
3.09 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie skontaktuj się przez
formularz kontaktowy
na naszej stronie.
Udźwig i kształt magnesu obliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030188 |
| GTIN/EAN | 5906301812050 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 9.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.82 kg / 57.06 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Przedstawione dane stanowią wynik kalkulacji inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MP 20x8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
4.71 kg / 10.38 lbs
4707.4 g / 46.2 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
3.73 kg / 8.22 lbs
3729.5 g / 36.6 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
2.91 kg / 6.42 lbs
2910.0 g / 28.5 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
1.72 kg / 3.79 lbs
1719.3 g / 16.9 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.45 kg / 1.00 lbs
452.4 g / 4.4 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.14 kg / 0.30 lbs
136.8 g / 1.3 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.05 kg / 0.11 lbs
49.2 g / 0.5 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MP 20x8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.16 kg / 2.57 lbs
1164.0 g / 11.4 N
|
| 1 mm | Stal (~0.2) |
0.94 kg / 2.08 lbs
942.0 g / 9.2 N
|
| 2 mm | Stal (~0.2) |
0.75 kg / 1.64 lbs
746.0 g / 7.3 N
|
| 3 mm | Stal (~0.2) |
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 20x8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.75 kg / 3.85 lbs
1746.0 g / 17.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.16 kg / 2.57 lbs
1164.0 g / 11.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.91 kg / 6.42 lbs
2910.0 g / 28.5 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 20x8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| 1 mm |
|
1.46 kg / 3.21 lbs
1455.0 g / 14.3 N
|
| 2 mm |
|
2.91 kg / 6.42 lbs
2910.0 g / 28.5 N
|
| 3 mm |
|
4.37 kg / 9.62 lbs
4365.0 g / 42.8 N
|
| 5 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
| 10 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
| 11 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
| 12 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MP 20x8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
OK |
| 40 °C | -2.2% |
5.69 kg / 12.55 lbs
5692.0 g / 55.8 N
|
OK |
| 60 °C | -4.4% |
5.56 kg / 12.27 lbs
5563.9 g / 54.6 N
|
OK |
| 80 °C | -6.6% |
5.44 kg / 11.98 lbs
5435.9 g / 53.3 N
|
|
| 100 °C | -28.8% |
4.14 kg / 9.14 lbs
4143.8 g / 40.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 20x8x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.03 kg / 119.11 lbs
6 121 Gs
|
8.10 kg / 17.87 lbs
8104 g / 79.5 N
|
N/A |
| 1 mm |
48.76 kg / 107.50 lbs
11 242 Gs
|
7.31 kg / 16.13 lbs
7314 g / 71.8 N
|
43.89 kg / 96.75 lbs
~0 Gs
|
| 2 mm |
43.70 kg / 96.34 lbs
10 642 Gs
|
6.55 kg / 14.45 lbs
6555 g / 64.3 N
|
39.33 kg / 86.71 lbs
~0 Gs
|
| 3 mm |
38.98 kg / 85.94 lbs
10 051 Gs
|
5.85 kg / 12.89 lbs
5847 g / 57.4 N
|
35.08 kg / 77.34 lbs
~0 Gs
|
| 5 mm |
30.63 kg / 67.54 lbs
8 910 Gs
|
4.60 kg / 10.13 lbs
4595 g / 45.1 N
|
27.57 kg / 60.78 lbs
~0 Gs
|
| 10 mm |
15.96 kg / 35.19 lbs
6 432 Gs
|
2.39 kg / 5.28 lbs
2394 g / 23.5 N
|
14.36 kg / 31.67 lbs
~0 Gs
|
| 20 mm |
4.20 kg / 9.26 lbs
3 299 Gs
|
0.63 kg / 1.39 lbs
630 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.42 lbs
702 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.17 kg / 0.38 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.20 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 20x8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 20x8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.61 km/h
(7.11 m/s)
|
0.25 J | |
| 30 mm |
42.40 km/h
(11.78 m/s)
|
0.69 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.14 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.28 J |
Tabela 9: Odporność na korozję
MP 20x8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 20x8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 20x8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.82 kg | Standard |
| Woda (dno rzeki) |
6.66 kg
(+0.84 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (między magnesem a blachą), ponieważ nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie wybuchem pyłu
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Siła neodymu
Stosuj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Magnesy są kruche
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Trwała utrata siły
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Chronić przed dziećmi
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Nadwrażliwość na metale
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
