MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030186
GTIN/EAN: 5906301812036
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.04 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.49 kg / 63.68 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
2.76 ZŁ z VAT / szt. + cena za transport
2.24 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo skontaktuj się korzystając z
nasz formularz online
przez naszą stronę.
Właściwości oraz wygląd magnesów zobaczysz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030186 |
| GTIN/EAN | 5906301812036 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.04 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.49 kg / 63.68 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Przedstawione wartości stanowią rezultat symulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MP 20x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
średnie ryzyko |
| 1 mm |
5321 Gs
532.1 mT
|
5.25 kg / 11.57 lbs
5249.3 g / 51.5 N
|
średnie ryzyko |
| 2 mm |
4736 Gs
473.6 mT
|
4.16 kg / 9.17 lbs
4158.8 g / 40.8 N
|
średnie ryzyko |
| 3 mm |
4184 Gs
418.4 mT
|
3.25 kg / 7.15 lbs
3245.0 g / 31.8 N
|
średnie ryzyko |
| 5 mm |
3216 Gs
321.6 mT
|
1.92 kg / 4.23 lbs
1917.2 g / 18.8 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.50 kg / 1.11 lbs
504.5 g / 4.9 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.15 kg / 0.34 lbs
152.6 g / 1.5 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.05 kg / 0.12 lbs
54.9 g / 0.5 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.02 lbs
10.7 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MP 20x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.30 kg / 2.86 lbs
1298.0 g / 12.7 N
|
| 1 mm | Stal (~0.2) |
1.05 kg / 2.31 lbs
1050.0 g / 10.3 N
|
| 2 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
832.0 g / 8.2 N
|
| 3 mm | Stal (~0.2) |
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 5 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 10 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 20x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.95 kg / 4.29 lbs
1947.0 g / 19.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.30 kg / 2.86 lbs
1298.0 g / 12.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.65 kg / 1.43 lbs
649.0 g / 6.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.25 kg / 7.15 lbs
3245.0 g / 31.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 20x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.65 kg / 1.43 lbs
649.0 g / 6.4 N
|
| 1 mm |
|
1.62 kg / 3.58 lbs
1622.5 g / 15.9 N
|
| 2 mm |
|
3.25 kg / 7.15 lbs
3245.0 g / 31.8 N
|
| 3 mm |
|
4.87 kg / 10.73 lbs
4867.5 g / 47.8 N
|
| 5 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
| 10 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
| 11 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
| 12 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MP 20x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
OK |
| 40 °C | -2.2% |
6.35 kg / 13.99 lbs
6347.2 g / 62.3 N
|
OK |
| 60 °C | -4.4% |
6.20 kg / 13.68 lbs
6204.4 g / 60.9 N
|
OK |
| 80 °C | -6.6% |
6.06 kg / 13.36 lbs
6061.7 g / 59.5 N
|
|
| 100 °C | -28.8% |
4.62 kg / 10.19 lbs
4620.9 g / 45.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 20x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.03 kg / 119.11 lbs
6 121 Gs
|
8.10 kg / 17.87 lbs
8104 g / 79.5 N
|
N/A |
| 1 mm |
48.76 kg / 107.50 lbs
11 242 Gs
|
7.31 kg / 16.13 lbs
7314 g / 71.8 N
|
43.89 kg / 96.75 lbs
~0 Gs
|
| 2 mm |
43.70 kg / 96.34 lbs
10 642 Gs
|
6.55 kg / 14.45 lbs
6555 g / 64.3 N
|
39.33 kg / 86.71 lbs
~0 Gs
|
| 3 mm |
38.98 kg / 85.94 lbs
10 051 Gs
|
5.85 kg / 12.89 lbs
5847 g / 57.4 N
|
35.08 kg / 77.34 lbs
~0 Gs
|
| 5 mm |
30.63 kg / 67.54 lbs
8 910 Gs
|
4.60 kg / 10.13 lbs
4595 g / 45.1 N
|
27.57 kg / 60.78 lbs
~0 Gs
|
| 10 mm |
15.96 kg / 35.19 lbs
6 432 Gs
|
2.39 kg / 5.28 lbs
2394 g / 23.5 N
|
14.36 kg / 31.67 lbs
~0 Gs
|
| 20 mm |
4.20 kg / 9.26 lbs
3 299 Gs
|
0.63 kg / 1.39 lbs
630 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.42 lbs
702 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.17 kg / 0.38 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.20 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 20x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MP 20x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.61 km/h
(7.11 m/s)
|
0.28 J | |
| 30 mm |
42.40 km/h
(11.78 m/s)
|
0.77 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.27 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.55 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 20x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 20x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 20x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.49 kg | Standard |
| Woda (dno rzeki) |
7.43 kg
(+0.94 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z wykorzystaniem płyty ze miękkiej stali, pełniącej rolę element zamykający obwód
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje udźwig.
BHP przy magnesach
Zagrożenie dla najmłodszych
Te produkty magnetyczne to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko złamań
Silne magnesy mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Rozprysk materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Nadwrażliwość na metale
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Maksymalna temperatura
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Zagrożenie dla nawigacji
Silne pole magnetyczne destabilizuje funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Bezpieczna praca
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
