MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030186
GTIN/EAN: 5906301812036
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.04 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.49 kg / 63.68 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
2.76 ZŁ z VAT / szt. + cena za transport
2.24 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz zapytania
na stronie kontaktowej.
Właściwości oraz wygląd magnesów neodymowych zobaczysz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja produktu - MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030186 |
| GTIN/EAN | 5906301812036 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.04 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.49 kg / 63.68 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią wynik kalkulacji inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MP 20x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
mocny |
| 1 mm |
5321 Gs
532.1 mT
|
5.25 kg / 11.57 lbs
5249.3 g / 51.5 N
|
mocny |
| 2 mm |
4736 Gs
473.6 mT
|
4.16 kg / 9.17 lbs
4158.8 g / 40.8 N
|
mocny |
| 3 mm |
4184 Gs
418.4 mT
|
3.25 kg / 7.15 lbs
3245.0 g / 31.8 N
|
mocny |
| 5 mm |
3216 Gs
321.6 mT
|
1.92 kg / 4.23 lbs
1917.2 g / 18.8 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.50 kg / 1.11 lbs
504.5 g / 4.9 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.15 kg / 0.34 lbs
152.6 g / 1.5 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.05 kg / 0.12 lbs
54.9 g / 0.5 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.02 lbs
10.7 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MP 20x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.30 kg / 2.86 lbs
1298.0 g / 12.7 N
|
| 1 mm | Stal (~0.2) |
1.05 kg / 2.31 lbs
1050.0 g / 10.3 N
|
| 2 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
832.0 g / 8.2 N
|
| 3 mm | Stal (~0.2) |
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 5 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 10 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 20x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.95 kg / 4.29 lbs
1947.0 g / 19.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.30 kg / 2.86 lbs
1298.0 g / 12.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.65 kg / 1.43 lbs
649.0 g / 6.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.25 kg / 7.15 lbs
3245.0 g / 31.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 20x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.65 kg / 1.43 lbs
649.0 g / 6.4 N
|
| 1 mm |
|
1.62 kg / 3.58 lbs
1622.5 g / 15.9 N
|
| 2 mm |
|
3.25 kg / 7.15 lbs
3245.0 g / 31.8 N
|
| 3 mm |
|
4.87 kg / 10.73 lbs
4867.5 g / 47.8 N
|
| 5 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
| 10 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
| 11 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
| 12 mm |
|
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MP 20x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.49 kg / 14.31 lbs
6490.0 g / 63.7 N
|
OK |
| 40 °C | -2.2% |
6.35 kg / 13.99 lbs
6347.2 g / 62.3 N
|
OK |
| 60 °C | -4.4% |
6.20 kg / 13.68 lbs
6204.4 g / 60.9 N
|
OK |
| 80 °C | -6.6% |
6.06 kg / 13.36 lbs
6061.7 g / 59.5 N
|
|
| 100 °C | -28.8% |
4.62 kg / 10.19 lbs
4620.9 g / 45.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 20x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.03 kg / 119.11 lbs
6 121 Gs
|
8.10 kg / 17.87 lbs
8104 g / 79.5 N
|
N/A |
| 1 mm |
48.76 kg / 107.50 lbs
11 242 Gs
|
7.31 kg / 16.13 lbs
7314 g / 71.8 N
|
43.89 kg / 96.75 lbs
~0 Gs
|
| 2 mm |
43.70 kg / 96.34 lbs
10 642 Gs
|
6.55 kg / 14.45 lbs
6555 g / 64.3 N
|
39.33 kg / 86.71 lbs
~0 Gs
|
| 3 mm |
38.98 kg / 85.94 lbs
10 051 Gs
|
5.85 kg / 12.89 lbs
5847 g / 57.4 N
|
35.08 kg / 77.34 lbs
~0 Gs
|
| 5 mm |
30.63 kg / 67.54 lbs
8 910 Gs
|
4.60 kg / 10.13 lbs
4595 g / 45.1 N
|
27.57 kg / 60.78 lbs
~0 Gs
|
| 10 mm |
15.96 kg / 35.19 lbs
6 432 Gs
|
2.39 kg / 5.28 lbs
2394 g / 23.5 N
|
14.36 kg / 31.67 lbs
~0 Gs
|
| 20 mm |
4.20 kg / 9.26 lbs
3 299 Gs
|
0.63 kg / 1.39 lbs
630 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.42 lbs
702 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.17 kg / 0.38 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.20 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 20x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 20x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.61 km/h
(7.11 m/s)
|
0.28 J | |
| 30 mm |
42.40 km/h
(11.78 m/s)
|
0.77 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.27 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.55 J |
Tabela 9: Odporność na korozję
MP 20x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 20x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 20x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.49 kg | Standard |
| Woda (dno rzeki) |
7.43 kg
(+0.94 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- z powierzchnią wolną od rys
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Szczelina – występowanie ciała obcego (farba, taśma, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa między magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Uczulenie na powłokę
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Implanty kardiologiczne
Pacjenci z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Bezpieczny dystans
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Ryzyko złamań
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Nie dawać dzieciom
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Ochrona oczu
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
