MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030184
GTIN/EAN: 5906301812012
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.20 kg / 50.97 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
4.50 ZŁ z VAT / szt. + cena za transport
3.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz kłopot z wyborem?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie daj znać poprzez
formularz kontaktowy
przez naszą stronę.
Moc a także budowę magnesów neodymowych zobaczysz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030184 |
| GTIN/EAN | 5906301812012 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.20 kg / 50.97 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione informacje są rezultat analizy matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
MP 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
5.20 kg / 5200.0 g
51.0 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
4.21 kg / 4205.9 g
41.3 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
3.33 kg / 3332.2 g
32.7 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
2.60 kg / 2600.0 g
25.5 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
1.54 kg / 1536.2 g
15.1 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.40 kg / 404.2 g
4.0 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.12 kg / 122.3 g
1.2 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.04 kg / 44.0 g
0.4 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 8.5 g
0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.8 g
0.0 N
|
niskie ryzyko |
MP 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.04 kg / 1040.0 g
10.2 N
|
| 1 mm | Stal (~0.2) |
0.84 kg / 842.0 g
8.3 N
|
| 2 mm | Stal (~0.2) |
0.67 kg / 666.0 g
6.5 N
|
| 3 mm | Stal (~0.2) |
0.52 kg / 520.0 g
5.1 N
|
| 5 mm | Stal (~0.2) |
0.31 kg / 308.0 g
3.0 N
|
| 10 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.56 kg / 1560.0 g
15.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.04 kg / 1040.0 g
10.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.52 kg / 520.0 g
5.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.60 kg / 2600.0 g
25.5 N
|
MP 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 520.0 g
5.1 N
|
| 1 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 2 mm |
|
2.60 kg / 2600.0 g
25.5 N
|
| 5 mm |
|
5.20 kg / 5200.0 g
51.0 N
|
| 10 mm |
|
5.20 kg / 5200.0 g
51.0 N
|
MP 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.20 kg / 5200.0 g
51.0 N
|
OK |
| 40 °C | -2.2% |
5.09 kg / 5085.6 g
49.9 N
|
OK |
| 60 °C | -4.4% |
4.97 kg / 4971.2 g
48.8 N
|
OK |
| 80 °C | -6.6% |
4.86 kg / 4856.8 g
47.6 N
|
|
| 100 °C | -28.8% |
3.70 kg / 3702.4 g
36.3 N
|
MP 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
54.03 kg / 54028 g
530.0 N
6 121 Gs
|
N/A |
| 1 mm |
48.76 kg / 48762 g
478.4 N
11 242 Gs
|
43.89 kg / 43886 g
430.5 N
~0 Gs
|
| 2 mm |
43.70 kg / 43700 g
428.7 N
10 642 Gs
|
39.33 kg / 39330 g
385.8 N
~0 Gs
|
| 3 mm |
38.98 kg / 38980 g
382.4 N
10 051 Gs
|
35.08 kg / 35082 g
344.2 N
~0 Gs
|
| 5 mm |
30.63 kg / 30634 g
300.5 N
8 910 Gs
|
27.57 kg / 27570 g
270.5 N
~0 Gs
|
| 10 mm |
15.96 kg / 15961 g
156.6 N
6 432 Gs
|
14.36 kg / 14365 g
140.9 N
~0 Gs
|
| 20 mm |
4.20 kg / 4200 g
41.2 N
3 299 Gs
|
3.78 kg / 3780 g
37.1 N
~0 Gs
|
| 50 mm |
0.19 kg / 190 g
1.9 N
702 Gs
|
0.17 kg / 171 g
1.7 N
~0 Gs
|
MP 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MP 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.62 km/h
(7.12 m/s)
|
0.22 J | |
| 30 mm |
42.41 km/h
(11.78 m/s)
|
0.61 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.02 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.04 J |
MP 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
MP 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.20 kg | Standard |
| Woda (dno rzeki) |
5.95 kg
(+0.75 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Uczulenie na powłokę
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Potężne pole
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Chronić przed dziećmi
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Łatwopalność
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Nie zbliżaj do komputera
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Kruchy spiek
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
