MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030396
GTIN/EAN: 5906301812333
Średnica
16 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.24 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.78 kg / 27.29 N
Indukcja magnetyczna
217.61 mT / 2176 Gs
Powłoka
[NiCuNi] nikiel
2.50 ZŁ z VAT / szt. + cena za transport
2.03 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie daj znać poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Moc a także wygląd elementów magnetycznych testujesz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne - MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 16x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030396 |
| GTIN/EAN | 5906301812333 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 16 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.24 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.78 kg / 27.29 N |
| Indukcja magnetyczna ~ ? | 217.61 mT / 2176 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Niniejsze wartości są bezpośredni efekt analizy fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MP 16x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1882 Gs
188.2 mT
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
średnie ryzyko |
| 1 mm |
1746 Gs
174.6 mT
|
2.39 kg / 5.27 lbs
2392.4 g / 23.5 N
|
średnie ryzyko |
| 2 mm |
1561 Gs
156.1 mT
|
1.91 kg / 4.22 lbs
1913.9 g / 18.8 N
|
bezpieczny |
| 3 mm |
1357 Gs
135.7 mT
|
1.45 kg / 3.19 lbs
1445.8 g / 14.2 N
|
bezpieczny |
| 5 mm |
969 Gs
96.9 mT
|
0.74 kg / 1.63 lbs
737.7 g / 7.2 N
|
bezpieczny |
| 10 mm |
387 Gs
38.7 mT
|
0.12 kg / 0.26 lbs
117.4 g / 1.2 N
|
bezpieczny |
| 15 mm |
171 Gs
17.1 mT
|
0.02 kg / 0.05 lbs
22.9 g / 0.2 N
|
bezpieczny |
| 20 mm |
87 Gs
8.7 mT
|
0.01 kg / 0.01 lbs
5.9 g / 0.1 N
|
bezpieczny |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
bezpieczny |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 16x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
556.0 g / 5.5 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 1.05 lbs
478.0 g / 4.7 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
382.0 g / 3.7 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 0.64 lbs
290.0 g / 2.8 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 16x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.83 kg / 1.84 lbs
834.0 g / 8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 1.23 lbs
556.0 g / 5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 16x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| 1 mm |
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
| 2 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 3 mm |
|
2.09 kg / 4.60 lbs
2085.0 g / 20.5 N
|
| 5 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 10 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 11 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 12 mm |
|
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MP 16x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
OK |
| 40 °C | -2.2% |
2.72 kg / 5.99 lbs
2718.8 g / 26.7 N
|
OK |
| 60 °C | -4.4% |
2.66 kg / 5.86 lbs
2657.7 g / 26.1 N
|
|
| 80 °C | -6.6% |
2.60 kg / 5.72 lbs
2596.5 g / 25.5 N
|
|
| 100 °C | -28.8% |
1.98 kg / 4.36 lbs
1979.4 g / 19.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 16x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.50 kg / 7.71 lbs
3 330 Gs
|
0.52 kg / 1.16 lbs
525 g / 5.1 N
|
N/A |
| 1 mm |
3.28 kg / 7.23 lbs
3 644 Gs
|
0.49 kg / 1.08 lbs
492 g / 4.8 N
|
2.95 kg / 6.51 lbs
~0 Gs
|
| 2 mm |
3.01 kg / 6.64 lbs
3 492 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.97 lbs
~0 Gs
|
| 3 mm |
2.71 kg / 5.98 lbs
3 316 Gs
|
0.41 kg / 0.90 lbs
407 g / 4.0 N
|
2.44 kg / 5.39 lbs
~0 Gs
|
| 5 mm |
2.11 kg / 4.64 lbs
2 920 Gs
|
0.32 kg / 0.70 lbs
316 g / 3.1 N
|
1.90 kg / 4.18 lbs
~0 Gs
|
| 10 mm |
0.93 kg / 2.05 lbs
1 939 Gs
|
0.14 kg / 0.31 lbs
139 g / 1.4 N
|
0.84 kg / 1.84 lbs
~0 Gs
|
| 20 mm |
0.15 kg / 0.33 lbs
773 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
98 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
40 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 16x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 16x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.50 km/h
(7.36 m/s)
|
0.11 J | |
| 30 mm |
44.74 km/h
(12.43 m/s)
|
0.33 J | |
| 50 mm |
57.74 km/h
(16.04 m/s)
|
0.55 J | |
| 100 mm |
81.66 km/h
(22.68 m/s)
|
1.09 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 16x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 16x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 743 Mx | 37.4 µWb |
| Współczynnik Pc | 0.24 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 16x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.78 kg | Standard |
| Woda (dno rzeki) |
3.18 kg
(+0.40 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- z użyciem podłoża ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- o grubości nie mniejszej niż 10 mm
- z powierzchnią oczyszczoną i gładką
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina między magnesem, a blachą obniża siłę trzymania.
Ostrzeżenia
Zagrożenie życia
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Tylko dla dorosłych
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Zagrożenie dla nawigacji
Silne pole magnetyczne destabilizuje funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Dla uczulonych
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Ochrona oczu
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Zagrożenie fizyczne
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Trwała utrata siły
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Nie wierć w magnesach
Pył generowany podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
