Magnesy neodymowe – najsilniejsze na rynku

Szukasz ogromnej mocy w małym rozmiarze? Oferujemy szeroki wybór magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do zastosowań domowych, garażu oraz modelarstwa. Przejrzyj asortyment z szybką wysyłką.

zobacz cennik i wymiary

Magnet fishing: mocne zestawy F200/F400

Zacznij swoje hobby polegającą na poszukiwaniu skarbów pod wodą! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz mocne linki sprawdzą się w rzekach i jeziorach.

wybierz zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do montażu bez wiercenia. Mocowania gwintowane (M8, M10, M12) gwarantują błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy mocowaniu lamp, czujników oraz reklam.

zobacz dostępne gwinty

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt na zamówienie Wysyłamy za 3-5 dni

MW 40x30 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010068

GTIN/EAN: 5906301810674

5.00

Średnica Ø

40 mm [±0,1 mm]

Wysokość

30 mm [±0,1 mm]

Waga

282.74 g

Kierunek magnesowania

→ diametralny

Udźwig

54.73 kg / 536.88 N

Indukcja magnetyczna

515.71 mT / 5157 Gs

Powłoka

[NiCuNi] nikiel

104.80 z VAT / szt. + cena za transport

85.20 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
85.20 ZŁ
104.80 ZŁ
cena od 10 szt.
80.09 ZŁ
98.51 ZŁ
cena od 30 szt.
74.98 ZŁ
92.22 ZŁ
Nie wiesz co kupić?

Zadzwoń już teraz +48 888 99 98 98 alternatywnie daj znać poprzez formularz zapytania w sekcji kontakt.
Udźwig i budowę magnesów zobaczysz u nas w narzędziu online do obliczeń.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Szczegółowa specyfikacja MW 40x30 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 40x30 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010068
GTIN/EAN 5906301810674
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 40 mm [±0,1 mm]
Wysokość 30 mm [±0,1 mm]
Waga 282.74 g
Kierunek magnesowania → diametralny
Udźwig ~ ? 54.73 kg / 536.88 N
Indukcja magnetyczna ~ ? 515.71 mT / 5157 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 40x30 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja techniczna magnesu neodymowego - parametry techniczne

Przedstawione wartości stanowią rezultat analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 40x30 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 5156 Gs
515.6 mT
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
krytyczny poziom
1 mm 4900 Gs
490.0 mT
49.43 kg / 108.98 lbs
49432.0 g / 484.9 N
krytyczny poziom
2 mm 4641 Gs
464.1 mT
44.33 kg / 97.74 lbs
44334.0 g / 434.9 N
krytyczny poziom
3 mm 4383 Gs
438.3 mT
39.54 kg / 87.17 lbs
39538.7 g / 387.9 N
krytyczny poziom
5 mm 3879 Gs
387.9 mT
30.98 kg / 68.30 lbs
30981.5 g / 303.9 N
krytyczny poziom
10 mm 2773 Gs
277.3 mT
15.83 kg / 34.89 lbs
15826.7 g / 155.3 N
krytyczny poziom
15 mm 1946 Gs
194.6 mT
7.79 kg / 17.18 lbs
7792.9 g / 76.4 N
mocny
20 mm 1372 Gs
137.2 mT
3.88 kg / 8.55 lbs
3877.9 g / 38.0 N
mocny
30 mm 723 Gs
72.3 mT
1.08 kg / 2.37 lbs
1076.5 g / 10.6 N
niskie ryzyko
50 mm 258 Gs
25.8 mT
0.14 kg / 0.30 lbs
137.4 g / 1.3 N
niskie ryzyko

Tabela 2: Równoległa siła ześlizgu (ściana)
MW 40x30 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
1 mm Stal (~0.2) 9.89 kg / 21.79 lbs
9886.0 g / 97.0 N
2 mm Stal (~0.2) 8.87 kg / 19.55 lbs
8866.0 g / 87.0 N
3 mm Stal (~0.2) 7.91 kg / 17.43 lbs
7908.0 g / 77.6 N
5 mm Stal (~0.2) 6.20 kg / 13.66 lbs
6196.0 g / 60.8 N
10 mm Stal (~0.2) 3.17 kg / 6.98 lbs
3166.0 g / 31.1 N
15 mm Stal (~0.2) 1.56 kg / 3.43 lbs
1558.0 g / 15.3 N
20 mm Stal (~0.2) 0.78 kg / 1.71 lbs
776.0 g / 7.6 N
30 mm Stal (~0.2) 0.22 kg / 0.48 lbs
216.0 g / 2.1 N
50 mm Stal (~0.2) 0.03 kg / 0.06 lbs
28.0 g / 0.3 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 40x30 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
16.42 kg / 36.20 lbs
16419.0 g / 161.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
5.47 kg / 12.07 lbs
5473.0 g / 53.7 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
27.37 kg / 60.33 lbs
27365.0 g / 268.5 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 40x30 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
3%
1.82 kg / 4.02 lbs
1824.3 g / 17.9 N
1 mm
8%
4.56 kg / 10.05 lbs
4560.8 g / 44.7 N
2 mm
17%
9.12 kg / 20.11 lbs
9121.7 g / 89.5 N
3 mm
25%
13.68 kg / 30.16 lbs
13682.5 g / 134.2 N
5 mm
42%
22.80 kg / 50.27 lbs
22804.2 g / 223.7 N
10 mm
83%
45.61 kg / 100.55 lbs
45608.3 g / 447.4 N
11 mm
92%
50.17 kg / 110.60 lbs
50169.2 g / 492.2 N
12 mm
100%
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N

Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 40x30 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
OK
40 °C -2.2% 53.53 kg / 118.00 lbs
53525.9 g / 525.1 N
OK
60 °C -4.4% 52.32 kg / 115.35 lbs
52321.9 g / 513.3 N
OK
80 °C -6.6% 51.12 kg / 112.70 lbs
51117.8 g / 501.5 N
100 °C -28.8% 38.97 kg / 85.91 lbs
38967.8 g / 382.3 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 40x30 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 205.97 kg / 454.08 lbs
5 879 Gs
30.89 kg / 68.11 lbs
30895 g / 303.1 N
N/A
1 mm 195.99 kg / 432.09 lbs
10 060 Gs
29.40 kg / 64.81 lbs
29399 g / 288.4 N
176.39 kg / 388.88 lbs
~0 Gs
2 mm 186.03 kg / 410.12 lbs
9 800 Gs
27.90 kg / 61.52 lbs
27904 g / 273.7 N
167.42 kg / 369.11 lbs
~0 Gs
3 mm 176.30 kg / 388.68 lbs
9 541 Gs
26.45 kg / 58.30 lbs
26445 g / 259.4 N
158.67 kg / 349.81 lbs
~0 Gs
5 mm 157.67 kg / 347.60 lbs
9 023 Gs
23.65 kg / 52.14 lbs
23650 g / 232.0 N
141.90 kg / 312.84 lbs
~0 Gs
10 mm 116.59 kg / 257.04 lbs
7 759 Gs
17.49 kg / 38.56 lbs
17489 g / 171.6 N
104.93 kg / 231.34 lbs
~0 Gs
20 mm 59.56 kg / 131.31 lbs
5 545 Gs
8.93 kg / 19.70 lbs
8934 g / 87.6 N
53.60 kg / 118.18 lbs
~0 Gs
50 mm 7.52 kg / 16.58 lbs
1 971 Gs
1.13 kg / 2.49 lbs
1128 g / 11.1 N
6.77 kg / 14.92 lbs
~0 Gs
60 mm 4.05 kg / 8.93 lbs
1 446 Gs
0.61 kg / 1.34 lbs
608 g / 6.0 N
3.65 kg / 8.04 lbs
~0 Gs
70 mm 2.28 kg / 5.03 lbs
1 085 Gs
0.34 kg / 0.75 lbs
342 g / 3.4 N
2.05 kg / 4.53 lbs
~0 Gs
80 mm 1.34 kg / 2.96 lbs
832 Gs
0.20 kg / 0.44 lbs
201 g / 2.0 N
1.21 kg / 2.66 lbs
~0 Gs
90 mm 0.82 kg / 1.80 lbs
650 Gs
0.12 kg / 0.27 lbs
123 g / 1.2 N
0.74 kg / 1.62 lbs
~0 Gs
100 mm 0.52 kg / 1.14 lbs
517 Gs
0.08 kg / 0.17 lbs
78 g / 0.8 N
0.47 kg / 1.03 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 40x30 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 23.5 cm
Implant słuchowy 10 Gs (1.0 mT) 18.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 14.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 11.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 10.0 cm
Karta płatnicza 400 Gs (40.0 mT) 4.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 3.5 cm

Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 40x30 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 16.37 km/h
(4.55 m/s)
2.92 J
30 mm 24.60 km/h
(6.83 m/s)
6.60 J
50 mm 31.42 km/h
(8.73 m/s)
10.77 J
100 mm 44.37 km/h
(12.33 m/s)
21.48 J

Tabela 9: Odporność na korozję
MW 40x30 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 40x30 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 65 488 Mx 654.9 µWb
Współczynnik Pc 0.76 Wysoki (Stabilny)

Tabela 11: Hydrostatyka i wyporność
MW 40x30 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 54.73 kg Standard
Woda (dno rzeki) 62.67 kg
(+7.94 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% nominalnego udźwigu.

2. Grubość podłoża

*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.

3. Praca w cieple

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010068-2026
Przelicznik magnesów
Udźwig magnesu

Indukcja magnetyczna

Inne propozycje

Prezentowany produkt to ekstremalnie mocny magnes walcowy, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø40x30 mm gwarantuje optymalną moc. Komponent MW 40x30 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 54.73 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem sprawdza się w modelarstwie, zaawansowanej automatyce oraz szeroko pojętym przemyśle, służąc jako element mocujący lub wykonawczy. Dzięki dużej mocy 536.88 N przy wadze zaledwie 282.74 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na kruchość materiału NdFeB, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego precyzyjnego komponentu. Dla zapewnienia stabilności w automatyce, stosuje się żywice anaerobowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do większości zastosowań w automatyce i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø40x30), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø40x30 mm, co przy wadze 282.74 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 536.88 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 282.74 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 30 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest najbardziej pożądany przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady i zalety neodymowych magnesów Nd2Fe14B.

Plusy

Poza ponadprzeciętną mocą, magnesy neodymowe gwarantują wiele innych atutów::
  • Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
  • Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
  • Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.

Wady

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
  • Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.

Charakterystyka udźwigu

Najlepsza nośność magnesu w idealnych parametrachco ma na to wpływ?

Podany w tabeli udźwig jest wynikiem testu laboratoryjnego zrealizowanego w specyficznych, idealnych warunkach:
  • przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
  • posiadającej masywność minimum 10 mm aby uniknąć nasycenia
  • charakteryzującej się brakiem chropowatości
  • bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
  • dla siły przyłożonej pod kątem prostym (w osi magnesu)
  • w temperaturze pokojowej

Kluczowe elementy wpływające na udźwig

Na efektywny udźwig mają wpływ konkretne warunki, głównie (od najważniejszych):
  • Dystans (między magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
  • Wektor obciążenia – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość stali – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
  • Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
  • Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
  • Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.

Bezpieczna praca przy magnesach neodymowych
Nie przegrzewaj magnesów

Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.

Pył jest łatwopalny

Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.

Unikaj kontaktu w przypadku alergii

Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.

Uszkodzenia ciała

Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!

Zagrożenie życia

Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.

Zagrożenie dla najmłodszych

Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.

Magnesy są kruche

Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.

Uszkodzenia czujników

Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.

Potężne pole

Używaj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.

Urządzenia elektroniczne

Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.

Uwaga! Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98