MW 40x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010068
GTIN/EAN: 5906301810674
Średnica Ø
40 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
282.74 g
Kierunek magnesowania
→ diametralny
Udźwig
54.73 kg / 536.88 N
Indukcja magnetyczna
515.71 mT / 5157 Gs
Powłoka
[NiCuNi] nikiel
104.80 ZŁ z VAT / szt. + cena za transport
85.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo pisz korzystając z
nasz formularz online
na stronie kontakt.
Parametry a także wygląd magnesu neodymowego zweryfikujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna produktu - MW 40x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010068 |
| GTIN/EAN | 5906301810674 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 282.74 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 54.73 kg / 536.88 N |
| Indukcja magnetyczna ~ ? | 515.71 mT / 5157 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione dane stanowią bezpośredni efekt analizy matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 40x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5156 Gs
515.6 mT
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
niebezpieczny! |
| 1 mm |
4900 Gs
490.0 mT
|
49.43 kg / 108.98 lbs
49432.0 g / 484.9 N
|
niebezpieczny! |
| 2 mm |
4641 Gs
464.1 mT
|
44.33 kg / 97.74 lbs
44334.0 g / 434.9 N
|
niebezpieczny! |
| 3 mm |
4383 Gs
438.3 mT
|
39.54 kg / 87.17 lbs
39538.7 g / 387.9 N
|
niebezpieczny! |
| 5 mm |
3879 Gs
387.9 mT
|
30.98 kg / 68.30 lbs
30981.5 g / 303.9 N
|
niebezpieczny! |
| 10 mm |
2773 Gs
277.3 mT
|
15.83 kg / 34.89 lbs
15826.7 g / 155.3 N
|
niebezpieczny! |
| 15 mm |
1946 Gs
194.6 mT
|
7.79 kg / 17.18 lbs
7792.9 g / 76.4 N
|
mocny |
| 20 mm |
1372 Gs
137.2 mT
|
3.88 kg / 8.55 lbs
3877.9 g / 38.0 N
|
mocny |
| 30 mm |
723 Gs
72.3 mT
|
1.08 kg / 2.37 lbs
1076.5 g / 10.6 N
|
bezpieczny |
| 50 mm |
258 Gs
25.8 mT
|
0.14 kg / 0.30 lbs
137.4 g / 1.3 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 40x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| 1 mm | Stal (~0.2) |
9.89 kg / 21.79 lbs
9886.0 g / 97.0 N
|
| 2 mm | Stal (~0.2) |
8.87 kg / 19.55 lbs
8866.0 g / 87.0 N
|
| 3 mm | Stal (~0.2) |
7.91 kg / 17.43 lbs
7908.0 g / 77.6 N
|
| 5 mm | Stal (~0.2) |
6.20 kg / 13.66 lbs
6196.0 g / 60.8 N
|
| 10 mm | Stal (~0.2) |
3.17 kg / 6.98 lbs
3166.0 g / 31.1 N
|
| 15 mm | Stal (~0.2) |
1.56 kg / 3.43 lbs
1558.0 g / 15.3 N
|
| 20 mm | Stal (~0.2) |
0.78 kg / 1.71 lbs
776.0 g / 7.6 N
|
| 30 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
216.0 g / 2.1 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 40x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
16.42 kg / 36.20 lbs
16419.0 g / 161.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.47 kg / 12.07 lbs
5473.0 g / 53.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
27.37 kg / 60.33 lbs
27365.0 g / 268.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 40x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.82 kg / 4.02 lbs
1824.3 g / 17.9 N
|
| 1 mm |
|
4.56 kg / 10.05 lbs
4560.8 g / 44.7 N
|
| 2 mm |
|
9.12 kg / 20.11 lbs
9121.7 g / 89.5 N
|
| 3 mm |
|
13.68 kg / 30.16 lbs
13682.5 g / 134.2 N
|
| 5 mm |
|
22.80 kg / 50.27 lbs
22804.2 g / 223.7 N
|
| 10 mm |
|
45.61 kg / 100.55 lbs
45608.3 g / 447.4 N
|
| 11 mm |
|
50.17 kg / 110.60 lbs
50169.2 g / 492.2 N
|
| 12 mm |
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 40x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
OK |
| 40 °C | -2.2% |
53.53 kg / 118.00 lbs
53525.9 g / 525.1 N
|
OK |
| 60 °C | -4.4% |
52.32 kg / 115.35 lbs
52321.9 g / 513.3 N
|
OK |
| 80 °C | -6.6% |
51.12 kg / 112.70 lbs
51117.8 g / 501.5 N
|
|
| 100 °C | -28.8% |
38.97 kg / 85.91 lbs
38967.8 g / 382.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 40x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
205.97 kg / 454.08 lbs
5 879 Gs
|
30.89 kg / 68.11 lbs
30895 g / 303.1 N
|
N/A |
| 1 mm |
195.99 kg / 432.09 lbs
10 060 Gs
|
29.40 kg / 64.81 lbs
29399 g / 288.4 N
|
176.39 kg / 388.88 lbs
~0 Gs
|
| 2 mm |
186.03 kg / 410.12 lbs
9 800 Gs
|
27.90 kg / 61.52 lbs
27904 g / 273.7 N
|
167.42 kg / 369.11 lbs
~0 Gs
|
| 3 mm |
176.30 kg / 388.68 lbs
9 541 Gs
|
26.45 kg / 58.30 lbs
26445 g / 259.4 N
|
158.67 kg / 349.81 lbs
~0 Gs
|
| 5 mm |
157.67 kg / 347.60 lbs
9 023 Gs
|
23.65 kg / 52.14 lbs
23650 g / 232.0 N
|
141.90 kg / 312.84 lbs
~0 Gs
|
| 10 mm |
116.59 kg / 257.04 lbs
7 759 Gs
|
17.49 kg / 38.56 lbs
17489 g / 171.6 N
|
104.93 kg / 231.34 lbs
~0 Gs
|
| 20 mm |
59.56 kg / 131.31 lbs
5 545 Gs
|
8.93 kg / 19.70 lbs
8934 g / 87.6 N
|
53.60 kg / 118.18 lbs
~0 Gs
|
| 50 mm |
7.52 kg / 16.58 lbs
1 971 Gs
|
1.13 kg / 2.49 lbs
1128 g / 11.1 N
|
6.77 kg / 14.92 lbs
~0 Gs
|
| 60 mm |
4.05 kg / 8.93 lbs
1 446 Gs
|
0.61 kg / 1.34 lbs
608 g / 6.0 N
|
3.65 kg / 8.04 lbs
~0 Gs
|
| 70 mm |
2.28 kg / 5.03 lbs
1 085 Gs
|
0.34 kg / 0.75 lbs
342 g / 3.4 N
|
2.05 kg / 4.53 lbs
~0 Gs
|
| 80 mm |
1.34 kg / 2.96 lbs
832 Gs
|
0.20 kg / 0.44 lbs
201 g / 2.0 N
|
1.21 kg / 2.66 lbs
~0 Gs
|
| 90 mm |
0.82 kg / 1.80 lbs
650 Gs
|
0.12 kg / 0.27 lbs
123 g / 1.2 N
|
0.74 kg / 1.62 lbs
~0 Gs
|
| 100 mm |
0.52 kg / 1.14 lbs
517 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 40x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 23.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 40x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.37 km/h
(4.55 m/s)
|
2.92 J | |
| 30 mm |
24.60 km/h
(6.83 m/s)
|
6.60 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
10.77 J | |
| 100 mm |
44.37 km/h
(12.33 m/s)
|
21.48 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 40x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 40x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 65 488 Mx | 654.9 µWb |
| Współczynnik Pc | 0.76 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 40x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 54.73 kg | Standard |
| Woda (dno rzeki) |
62.67 kg
(+7.94 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (nikiel, Au, Ag) mają nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z użyciem podłoża ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- o przekroju wynoszącej minimum 10 mm
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda stal nie przyjmuje całego pola, przez co część mocy jest tracona na drugą stronę.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Domieszki stopowe redukują właściwości magnetyczne i udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje nośność.
Ostrzeżenia
Kompas i GPS
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Ryzyko pożaru
Proszek powstający podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Siła zgniatająca
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Kruchy spiek
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Uwaga: zadławienie
Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Ostrzeżenie dla alergików
Część populacji posiada uczulenie na nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może wywołać silną reakcję alergiczną. Rekomendujemy używanie rękawiczek ochronnych.
