MW 40x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010068
GTIN/EAN: 5906301810674
Średnica Ø
40 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
282.74 g
Kierunek magnesowania
→ diametralny
Udźwig
54.73 kg / 536.88 N
Indukcja magnetyczna
515.71 mT / 5157 Gs
Powłoka
[NiCuNi] nikiel
104.80 ZŁ z VAT / szt. + cena za transport
85.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie daj znać poprzez
formularz zapytania
w sekcji kontakt.
Udźwig i budowę magnesów zobaczysz u nas w
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MW 40x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010068 |
| GTIN/EAN | 5906301810674 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 282.74 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 54.73 kg / 536.88 N |
| Indukcja magnetyczna ~ ? | 515.71 mT / 5157 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią rezultat analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 40x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5156 Gs
515.6 mT
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
krytyczny poziom |
| 1 mm |
4900 Gs
490.0 mT
|
49.43 kg / 108.98 lbs
49432.0 g / 484.9 N
|
krytyczny poziom |
| 2 mm |
4641 Gs
464.1 mT
|
44.33 kg / 97.74 lbs
44334.0 g / 434.9 N
|
krytyczny poziom |
| 3 mm |
4383 Gs
438.3 mT
|
39.54 kg / 87.17 lbs
39538.7 g / 387.9 N
|
krytyczny poziom |
| 5 mm |
3879 Gs
387.9 mT
|
30.98 kg / 68.30 lbs
30981.5 g / 303.9 N
|
krytyczny poziom |
| 10 mm |
2773 Gs
277.3 mT
|
15.83 kg / 34.89 lbs
15826.7 g / 155.3 N
|
krytyczny poziom |
| 15 mm |
1946 Gs
194.6 mT
|
7.79 kg / 17.18 lbs
7792.9 g / 76.4 N
|
mocny |
| 20 mm |
1372 Gs
137.2 mT
|
3.88 kg / 8.55 lbs
3877.9 g / 38.0 N
|
mocny |
| 30 mm |
723 Gs
72.3 mT
|
1.08 kg / 2.37 lbs
1076.5 g / 10.6 N
|
niskie ryzyko |
| 50 mm |
258 Gs
25.8 mT
|
0.14 kg / 0.30 lbs
137.4 g / 1.3 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 40x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| 1 mm | Stal (~0.2) |
9.89 kg / 21.79 lbs
9886.0 g / 97.0 N
|
| 2 mm | Stal (~0.2) |
8.87 kg / 19.55 lbs
8866.0 g / 87.0 N
|
| 3 mm | Stal (~0.2) |
7.91 kg / 17.43 lbs
7908.0 g / 77.6 N
|
| 5 mm | Stal (~0.2) |
6.20 kg / 13.66 lbs
6196.0 g / 60.8 N
|
| 10 mm | Stal (~0.2) |
3.17 kg / 6.98 lbs
3166.0 g / 31.1 N
|
| 15 mm | Stal (~0.2) |
1.56 kg / 3.43 lbs
1558.0 g / 15.3 N
|
| 20 mm | Stal (~0.2) |
0.78 kg / 1.71 lbs
776.0 g / 7.6 N
|
| 30 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
216.0 g / 2.1 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 40x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
16.42 kg / 36.20 lbs
16419.0 g / 161.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.47 kg / 12.07 lbs
5473.0 g / 53.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
27.37 kg / 60.33 lbs
27365.0 g / 268.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 40x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.82 kg / 4.02 lbs
1824.3 g / 17.9 N
|
| 1 mm |
|
4.56 kg / 10.05 lbs
4560.8 g / 44.7 N
|
| 2 mm |
|
9.12 kg / 20.11 lbs
9121.7 g / 89.5 N
|
| 3 mm |
|
13.68 kg / 30.16 lbs
13682.5 g / 134.2 N
|
| 5 mm |
|
22.80 kg / 50.27 lbs
22804.2 g / 223.7 N
|
| 10 mm |
|
45.61 kg / 100.55 lbs
45608.3 g / 447.4 N
|
| 11 mm |
|
50.17 kg / 110.60 lbs
50169.2 g / 492.2 N
|
| 12 mm |
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 40x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
OK |
| 40 °C | -2.2% |
53.53 kg / 118.00 lbs
53525.9 g / 525.1 N
|
OK |
| 60 °C | -4.4% |
52.32 kg / 115.35 lbs
52321.9 g / 513.3 N
|
OK |
| 80 °C | -6.6% |
51.12 kg / 112.70 lbs
51117.8 g / 501.5 N
|
|
| 100 °C | -28.8% |
38.97 kg / 85.91 lbs
38967.8 g / 382.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 40x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
205.97 kg / 454.08 lbs
5 879 Gs
|
30.89 kg / 68.11 lbs
30895 g / 303.1 N
|
N/A |
| 1 mm |
195.99 kg / 432.09 lbs
10 060 Gs
|
29.40 kg / 64.81 lbs
29399 g / 288.4 N
|
176.39 kg / 388.88 lbs
~0 Gs
|
| 2 mm |
186.03 kg / 410.12 lbs
9 800 Gs
|
27.90 kg / 61.52 lbs
27904 g / 273.7 N
|
167.42 kg / 369.11 lbs
~0 Gs
|
| 3 mm |
176.30 kg / 388.68 lbs
9 541 Gs
|
26.45 kg / 58.30 lbs
26445 g / 259.4 N
|
158.67 kg / 349.81 lbs
~0 Gs
|
| 5 mm |
157.67 kg / 347.60 lbs
9 023 Gs
|
23.65 kg / 52.14 lbs
23650 g / 232.0 N
|
141.90 kg / 312.84 lbs
~0 Gs
|
| 10 mm |
116.59 kg / 257.04 lbs
7 759 Gs
|
17.49 kg / 38.56 lbs
17489 g / 171.6 N
|
104.93 kg / 231.34 lbs
~0 Gs
|
| 20 mm |
59.56 kg / 131.31 lbs
5 545 Gs
|
8.93 kg / 19.70 lbs
8934 g / 87.6 N
|
53.60 kg / 118.18 lbs
~0 Gs
|
| 50 mm |
7.52 kg / 16.58 lbs
1 971 Gs
|
1.13 kg / 2.49 lbs
1128 g / 11.1 N
|
6.77 kg / 14.92 lbs
~0 Gs
|
| 60 mm |
4.05 kg / 8.93 lbs
1 446 Gs
|
0.61 kg / 1.34 lbs
608 g / 6.0 N
|
3.65 kg / 8.04 lbs
~0 Gs
|
| 70 mm |
2.28 kg / 5.03 lbs
1 085 Gs
|
0.34 kg / 0.75 lbs
342 g / 3.4 N
|
2.05 kg / 4.53 lbs
~0 Gs
|
| 80 mm |
1.34 kg / 2.96 lbs
832 Gs
|
0.20 kg / 0.44 lbs
201 g / 2.0 N
|
1.21 kg / 2.66 lbs
~0 Gs
|
| 90 mm |
0.82 kg / 1.80 lbs
650 Gs
|
0.12 kg / 0.27 lbs
123 g / 1.2 N
|
0.74 kg / 1.62 lbs
~0 Gs
|
| 100 mm |
0.52 kg / 1.14 lbs
517 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 40x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 23.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 40x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.37 km/h
(4.55 m/s)
|
2.92 J | |
| 30 mm |
24.60 km/h
(6.83 m/s)
|
6.60 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
10.77 J | |
| 100 mm |
44.37 km/h
(12.33 m/s)
|
21.48 J |
Tabela 9: Odporność na korozję
MW 40x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 40x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 65 488 Mx | 654.9 µWb |
| Współczynnik Pc | 0.76 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 40x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 54.73 kg | Standard |
| Woda (dno rzeki) |
62.67 kg
(+7.94 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Dystans (między magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Wektor obciążenia – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Bezpieczna praca przy magnesach neodymowych
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie dla najmłodszych
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Potężne pole
Używaj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Urządzenia elektroniczne
Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
