MW 29.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010052
GTIN/EAN: 5906301810513
Średnica Ø
29.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
52.66 g
Kierunek magnesowania
→ diametralny
Udźwig
21.50 kg / 210.90 N
Indukcja magnetyczna
344.60 mT / 3446 Gs
Powłoka
[NiCuNi] nikiel
24.60 ZŁ z VAT / szt. + cena za transport
20.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie napisz korzystając z
formularz
w sekcji kontakt.
Moc i formę elementów magnetycznych testujesz dzięki naszemu
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna - MW 29.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 29.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010052 |
| GTIN/EAN | 5906301810513 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 29.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 52.66 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 21.50 kg / 210.90 N |
| Indukcja magnetyczna ~ ? | 344.60 mT / 3446 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione informacje stanowią rezultat analizy fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 29.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3445 Gs
344.5 mT
|
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
|
krytyczny poziom |
| 1 mm |
3261 Gs
326.1 mT
|
19.26 kg / 42.45 lbs
19256.6 g / 188.9 N
|
krytyczny poziom |
| 2 mm |
3059 Gs
305.9 mT
|
16.95 kg / 37.36 lbs
16947.4 g / 166.3 N
|
krytyczny poziom |
| 3 mm |
2848 Gs
284.8 mT
|
14.70 kg / 32.40 lbs
14696.2 g / 144.2 N
|
krytyczny poziom |
| 5 mm |
2425 Gs
242.5 mT
|
10.65 kg / 23.48 lbs
10650.1 g / 104.5 N
|
krytyczny poziom |
| 10 mm |
1519 Gs
151.9 mT
|
4.18 kg / 9.21 lbs
4178.4 g / 41.0 N
|
średnie ryzyko |
| 15 mm |
930 Gs
93.0 mT
|
1.57 kg / 3.45 lbs
1565.8 g / 15.4 N
|
bezpieczny |
| 20 mm |
583 Gs
58.3 mT
|
0.62 kg / 1.36 lbs
616.0 g / 6.0 N
|
bezpieczny |
| 30 mm |
258 Gs
25.8 mT
|
0.12 kg / 0.27 lbs
121.0 g / 1.2 N
|
bezpieczny |
| 50 mm |
76 Gs
7.6 mT
|
0.01 kg / 0.02 lbs
10.4 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 29.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.30 kg / 9.48 lbs
4300.0 g / 42.2 N
|
| 1 mm | Stal (~0.2) |
3.85 kg / 8.49 lbs
3852.0 g / 37.8 N
|
| 2 mm | Stal (~0.2) |
3.39 kg / 7.47 lbs
3390.0 g / 33.3 N
|
| 3 mm | Stal (~0.2) |
2.94 kg / 6.48 lbs
2940.0 g / 28.8 N
|
| 5 mm | Stal (~0.2) |
2.13 kg / 4.70 lbs
2130.0 g / 20.9 N
|
| 10 mm | Stal (~0.2) |
0.84 kg / 1.84 lbs
836.0 g / 8.2 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| 20 mm | Stal (~0.2) |
0.12 kg / 0.27 lbs
124.0 g / 1.2 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 29.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.45 kg / 14.22 lbs
6450.0 g / 63.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.30 kg / 9.48 lbs
4300.0 g / 42.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.15 kg / 4.74 lbs
2150.0 g / 21.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.75 kg / 23.70 lbs
10750.0 g / 105.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 29.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.08 kg / 2.37 lbs
1075.0 g / 10.5 N
|
| 1 mm |
|
2.69 kg / 5.92 lbs
2687.5 g / 26.4 N
|
| 2 mm |
|
5.38 kg / 11.85 lbs
5375.0 g / 52.7 N
|
| 3 mm |
|
8.06 kg / 17.77 lbs
8062.5 g / 79.1 N
|
| 5 mm |
|
13.44 kg / 29.62 lbs
13437.5 g / 131.8 N
|
| 10 mm |
|
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
|
| 11 mm |
|
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
|
| 12 mm |
|
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 29.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
|
OK |
| 40 °C | -2.2% |
21.03 kg / 46.36 lbs
21027.0 g / 206.3 N
|
OK |
| 60 °C | -4.4% |
20.55 kg / 45.31 lbs
20554.0 g / 201.6 N
|
|
| 80 °C | -6.6% |
20.08 kg / 44.27 lbs
20081.0 g / 197.0 N
|
|
| 100 °C | -28.8% |
15.31 kg / 33.75 lbs
15308.0 g / 150.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 29.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
51.38 kg / 113.28 lbs
4 963 Gs
|
7.71 kg / 16.99 lbs
7708 g / 75.6 N
|
N/A |
| 1 mm |
48.76 kg / 107.50 lbs
6 712 Gs
|
7.31 kg / 16.12 lbs
7314 g / 71.7 N
|
43.88 kg / 96.75 lbs
~0 Gs
|
| 2 mm |
46.02 kg / 101.46 lbs
6 521 Gs
|
6.90 kg / 15.22 lbs
6903 g / 67.7 N
|
41.42 kg / 91.32 lbs
~0 Gs
|
| 3 mm |
43.26 kg / 95.37 lbs
6 322 Gs
|
6.49 kg / 14.31 lbs
6489 g / 63.7 N
|
38.93 kg / 85.83 lbs
~0 Gs
|
| 5 mm |
37.78 kg / 83.30 lbs
5 909 Gs
|
5.67 kg / 12.49 lbs
5667 g / 55.6 N
|
34.00 kg / 74.97 lbs
~0 Gs
|
| 10 mm |
25.45 kg / 56.11 lbs
4 850 Gs
|
3.82 kg / 8.42 lbs
3818 g / 37.5 N
|
22.91 kg / 50.50 lbs
~0 Gs
|
| 20 mm |
9.99 kg / 22.02 lbs
3 038 Gs
|
1.50 kg / 3.30 lbs
1498 g / 14.7 N
|
8.99 kg / 19.81 lbs
~0 Gs
|
| 50 mm |
0.63 kg / 1.38 lbs
761 Gs
|
0.09 kg / 0.21 lbs
94 g / 0.9 N
|
0.56 kg / 1.24 lbs
~0 Gs
|
| 60 mm |
0.29 kg / 0.64 lbs
517 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 70 mm |
0.14 kg / 0.32 lbs
364 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.17 lbs
265 Gs
|
0.01 kg / 0.03 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
198 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
152 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 29.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 29.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.72 km/h
(6.31 m/s)
|
1.05 J | |
| 30 mm |
35.42 km/h
(9.84 m/s)
|
2.55 J | |
| 50 mm |
45.58 km/h
(12.66 m/s)
|
4.22 J | |
| 100 mm |
64.44 km/h
(17.90 m/s)
|
8.44 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 29.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 29.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 25 588 Mx | 255.9 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 29.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 21.50 kg | Standard |
| Woda (dno rzeki) |
24.62 kg
(+3.12 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o grubości wynoszącej minimum 10 mm
- z powierzchnią idealnie równą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla redukują przenikalność magnetyczną i udźwig.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza nośność.
Ostrzeżenia
Zagrożenie fizyczne
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Nośniki danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Kruchość materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Samozapłon
Proszek generowany podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Interferencja magnetyczna
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
