MPL 40x10x18 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020149
GTIN/EAN: 5906301811558
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
→ diametralny
Udźwig
16.72 kg / 164.01 N
Indukcja magnetyczna
540.48 mT / 5405 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie daj znać przez
formularz kontaktowy
przez naszą stronę.
Udźwig i kształt elementów magnetycznych sprawdzisz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 40x10x18 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x18 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020149 |
| GTIN/EAN | 5906301811558 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 16.72 kg / 164.01 N |
| Indukcja magnetyczna ~ ? | 540.48 mT / 5405 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Niniejsze dane stanowią wynik kalkulacji matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MPL 40x10x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5402 Gs
540.2 mT
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
krytyczny poziom |
| 1 mm |
4664 Gs
466.4 mT
|
12.46 kg / 27.48 lbs
12464.6 g / 122.3 N
|
krytyczny poziom |
| 2 mm |
3970 Gs
397.0 mT
|
9.03 kg / 19.90 lbs
9028.7 g / 88.6 N
|
mocny |
| 3 mm |
3362 Gs
336.2 mT
|
6.48 kg / 14.28 lbs
6476.4 g / 63.5 N
|
mocny |
| 5 mm |
2432 Gs
243.2 mT
|
3.39 kg / 7.47 lbs
3388.5 g / 33.2 N
|
mocny |
| 10 mm |
1220 Gs
122.0 mT
|
0.85 kg / 1.88 lbs
853.2 g / 8.4 N
|
słaby uchwyt |
| 15 mm |
703 Gs
70.3 mT
|
0.28 kg / 0.62 lbs
282.9 g / 2.8 N
|
słaby uchwyt |
| 20 mm |
440 Gs
44.0 mT
|
0.11 kg / 0.24 lbs
111.1 g / 1.1 N
|
słaby uchwyt |
| 30 mm |
203 Gs
20.3 mT
|
0.02 kg / 0.05 lbs
23.6 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 40x10x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.34 kg / 7.37 lbs
3344.0 g / 32.8 N
|
| 1 mm | Stal (~0.2) |
2.49 kg / 5.49 lbs
2492.0 g / 24.4 N
|
| 2 mm | Stal (~0.2) |
1.81 kg / 3.98 lbs
1806.0 g / 17.7 N
|
| 3 mm | Stal (~0.2) |
1.30 kg / 2.86 lbs
1296.0 g / 12.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
678.0 g / 6.7 N
|
| 10 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 15 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 40x10x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.02 kg / 11.06 lbs
5016.0 g / 49.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.34 kg / 7.37 lbs
3344.0 g / 32.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.67 kg / 3.69 lbs
1672.0 g / 16.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.36 kg / 18.43 lbs
8360.0 g / 82.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 40x10x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 1.84 lbs
836.0 g / 8.2 N
|
| 1 mm |
|
2.09 kg / 4.61 lbs
2090.0 g / 20.5 N
|
| 2 mm |
|
4.18 kg / 9.22 lbs
4180.0 g / 41.0 N
|
| 3 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 5 mm |
|
10.45 kg / 23.04 lbs
10450.0 g / 102.5 N
|
| 10 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
| 11 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
| 12 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 40x10x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
OK |
| 40 °C | -2.2% |
16.35 kg / 36.05 lbs
16352.2 g / 160.4 N
|
OK |
| 60 °C | -4.4% |
15.98 kg / 35.24 lbs
15984.3 g / 156.8 N
|
OK |
| 80 °C | -6.6% |
15.62 kg / 34.43 lbs
15616.5 g / 153.2 N
|
|
| 100 °C | -28.8% |
11.90 kg / 26.25 lbs
11904.6 g / 116.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 40x10x18 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.96 kg / 158.65 lbs
5 928 Gs
|
10.79 kg / 23.80 lbs
10794 g / 105.9 N
|
N/A |
| 1 mm |
62.49 kg / 137.76 lbs
10 068 Gs
|
9.37 kg / 20.66 lbs
9373 g / 91.9 N
|
56.24 kg / 123.98 lbs
~0 Gs
|
| 2 mm |
53.65 kg / 118.27 lbs
9 328 Gs
|
8.05 kg / 17.74 lbs
8047 g / 78.9 N
|
48.28 kg / 106.44 lbs
~0 Gs
|
| 3 mm |
45.76 kg / 100.88 lbs
8 615 Gs
|
6.86 kg / 15.13 lbs
6864 g / 67.3 N
|
41.18 kg / 90.79 lbs
~0 Gs
|
| 5 mm |
32.92 kg / 72.58 lbs
7 308 Gs
|
4.94 kg / 10.89 lbs
4938 g / 48.4 N
|
29.63 kg / 65.32 lbs
~0 Gs
|
| 10 mm |
14.58 kg / 32.15 lbs
4 864 Gs
|
2.19 kg / 4.82 lbs
2188 g / 21.5 N
|
13.13 kg / 28.94 lbs
~0 Gs
|
| 20 mm |
3.67 kg / 8.10 lbs
2 441 Gs
|
0.55 kg / 1.21 lbs
551 g / 5.4 N
|
3.30 kg / 7.29 lbs
~0 Gs
|
| 50 mm |
0.21 kg / 0.46 lbs
585 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 60 mm |
0.10 kg / 0.22 lbs
406 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.06 lbs
217 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
165 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
128 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 40x10x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 40x10x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.30 km/h
(5.08 m/s)
|
0.70 J | |
| 30 mm |
30.76 km/h
(8.55 m/s)
|
1.97 J | |
| 50 mm |
39.69 km/h
(11.02 m/s)
|
3.28 J | |
| 100 mm |
56.12 km/h
(15.59 m/s)
|
6.56 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x10x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 40x10x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 285 Mx | 212.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 40x10x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.72 kg | Standard |
| Woda (dno rzeki) |
19.14 kg
(+2.42 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- której grubość to min. 10 mm
- o szlifowanej powierzchni styku
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
BHP przy magnesach
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Niszczenie danych
Ekstremalne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Chronić przed dziećmi
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Ogromna siła
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Wpływ na zdrowie
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Wrażliwość na ciepło
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Reakcje alergiczne
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
