SMZR 25x250 / N52 - separator magnetyczny z rączką
separator magnetyczny z rączką
Numer katalogowy 140236
GTIN/EAN: 5906301813446
Średnica Ø
25 mm [±1 mm]
Wysokość
250 mm [±1 mm]
Waga
840 g
Strumień magnetyczny
~ 9 500 Gauss [±5%]
676.50 ZŁ z VAT / szt. + cena za transport
550.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub daj znać przez
nasz formularz online
przez naszą stronę.
Siłę a także budowę magnesów skontrolujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - SMZR 25x250 / N52 - separator magnetyczny z rączką
Specyfikacja / charakterystyka - SMZR 25x250 / N52 - separator magnetyczny z rączką
| właściwości | wartości |
|---|---|
| Nr kat. | 140236 |
| GTIN/EAN | 5906301813446 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±1 mm] |
| Wysokość | 250 mm [±1 mm] |
| Waga | 840 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 9 500 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 9 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N52
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 14.2-14.7 | kGs |
| remanencja Br [min. - maks.] ? | 1420-1470 | mT |
| koercja bHc ? | 10.8-12.5 | kOe |
| koercja bHc ? | 860-995 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 48-53 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 380-422 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Tabela 1: Konstrukcja wałka
SMZR 25x250 / N52
| Parametr | Wartość | Opis / Jednostka |
|---|---|---|
| Średnica (Ø) | 25 | mm |
| Długość całkowita | 250 | mm (L) |
| Długość aktywna | 230 | mm |
| Liczba sekcji | 10 | modułów |
| Strefa martwa | 20 | mm (Blaszka 2mm + Gwint 18mm) |
| Waga (szacowana) | ~933 | g |
| Pow. aktywna | 181 | cm² (Area) |
| Materiał obudowy | AISI 304 | 1.4301 (Inox) |
| Wykończenie | Ra < 0.8 µm | Polerowane |
| Klasa temp. | 80°C | Standard (N) |
| Spadek siły (przy max °C) | -12.8% | Strata odwracalna (fizyka) |
| Siła (obliczona) | 22.6 | kg (teoret.) |
| Indukcja (pow.) | ~9 500 | Gauss (Max) |
Wykres 2: Profil pola (10 sekcji)
Wykres 3: Wydajność temperaturowa
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- o szlifowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (między magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla redukują przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Wpływ na zdrowie
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Niklowa powłoka a alergia
Pewna grupa użytkowników wykazuje nadwrażliwość na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może wywołać wysypkę. Wskazane jest noszenie rękawiczek ochronnych.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Uwaga: zadławienie
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Ogromna siła
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
