SMZR 25x250 / N52 - separator magnetyczny z rączką
separator magnetyczny z rączką
Numer katalogowy 140236
GTIN: 5906301813446
Średnica Ø
25 mm [±1 mm]
Wysokość
250 mm [±1 mm]
Waga
0.01 g
Strumień magnetyczny
~ 9 500 Gauss [±5%]
676.50 ZŁ z VAT / szt. + cena za transport
550.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz gdzie kupić?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie napisz za pomocą
formularz
na stronie kontaktowej.
Siłę a także kształt magnesu neodymowego sprawdzisz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
SMZR 25x250 / N52 - separator magnetyczny z rączką
Specyfikacja / charakterystyka SMZR 25x250 / N52 - separator magnetyczny z rączką
| właściwości | wartości |
|---|---|
| Nr kat. | 140236 |
| GTIN | 5906301813446 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±1 mm] |
| Wysokość | 250 mm [±1 mm] |
| Waga | 0.01 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 9 500 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 9 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N52
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 14.2-14.7 | kGs |
| remanencja Br [Min. - Max.] ? | 1420-1470 | T |
| koercja bHc ? | 10.8-12.5 | kOe |
| koercja bHc ? | 860-995 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 48-53 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 380-422 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne propozycje
UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów z neodymu NdFeB.
Neodymy to nie tylko siła, ale także inne kluczowe właściwości, w tym::
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
Parametr siły jest wartością teoretyczną maksymalną zrealizowanego w warunkach wzorcowych:
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak powłok)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
Podczas codziennego użytkowania, faktyczna siła trzymania jest determinowana przez wielu zmiennych, uszeregowanych od kluczowych:
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
* Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.
Zalety i wady magnesów z neodymu NdFeB.
Neodymy to nie tylko siła, ale także inne kluczowe właściwości, w tym::
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
Parametr siły jest wartością teoretyczną maksymalną zrealizowanego w warunkach wzorcowych:
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak powłok)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
Podczas codziennego użytkowania, faktyczna siła trzymania jest determinowana przez wielu zmiennych, uszeregowanych od kluczowych:
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
* Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.
BHP przy magnesach
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Interferencja medyczna
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Ryzyko pęknięcia
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Niebezpieczeństwo przytrzaśnięcia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Nie dawać dzieciom
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Limity termiczne
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Potężne pole
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Bezpieczeństwo!
Szczegółowe omówienie o zagrożeniach w artykule: BHP magnesów z neodymu.
