SMZR 25x125 / N52 - separator magnetyczny z rączką
separator magnetyczny z rączką
Numer katalogowy 140233
GTIN/EAN: 5906301813415
Średnica Ø
25 mm [±1 mm]
Wysokość
125 mm [±1 mm]
Waga
0.01 g
Strumień magnetyczny
~ 9 500 Gauss [±5%]
369.00 ZŁ z VAT / szt. + cena za transport
300.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub skontaktuj się poprzez
nasz formularz online
przez naszą stronę.
Udźwig a także kształt magnesów neodymowych obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - SMZR 25x125 / N52 - separator magnetyczny z rączką
Specyfikacja / charakterystyka - SMZR 25x125 / N52 - separator magnetyczny z rączką
| właściwości | wartości |
|---|---|
| Nr kat. | 140233 |
| GTIN/EAN | 5906301813415 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±1 mm] |
| Wysokość | 125 mm [±1 mm] |
| Waga | 0.01 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 9 500 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 4 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N52
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 14.2-14.7 | kGs |
| remanencja Br [min. - maks.] ? | 1420-1470 | mT |
| koercja bHc ? | 10.8-12.5 | kOe |
| koercja bHc ? | 860-995 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 48-53 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 380-422 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o grubości przynajmniej 10 mm
- charakteryzującej się gładkością
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Odstęp (pomiędzy magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Niszczenie danych
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Niklowa powłoka a alergia
Niektóre osoby wykazuje uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może skutkować wysypkę. Wskazane jest noszenie rękawiczek ochronnych.
Zasady obsługi
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Podatność na pękanie
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Ryzyko połknięcia
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Implanty medyczne
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Limity termiczne
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
