magnesy neodymowe

Czym są neodymowe magnesy? Praktycznie wszystkie magnesy neodymowe, które mamy na stanach magazynowych, można znaleźć na spisie poniżej sprawdź cennik magnesów

magnes do poszukiwań F 200 GOLD z silnym uchem bocznym i liną

Gdzie kupić silny UM magnes neodymowy do poszukiwań? Magnetyczne uchwyty w szczelnej, solidnej obudowie nadają się doskonale do stosowania w trudnych, wymagających warunkach klimatycznych, w tym również podczas opadów deszczu i śniegu sprawdź...

uchwyty magnetyczne

Magnetyczne uchwyty mogą być stosowane do ułatwienia procesów produkcyjnych, odkrywania wody lub do znajdowania meteorytów ze złota. Mocowania to śruba 3x [M10] duża moc zobacz więcej...

Ciesz się wysyłką zamówienia w dzień zlecenia jeśli zamówienie przyjęte jest przed 14:00 w dni robocze.

logo Dhit sp. z o.o.
Produkt dostępny wysyłka jutro

SM 32x100 [2xM8] / N42 - separator magnetyczny

separator magnetyczny

Numer katalogowy 130296

GTIN: 5906301812890

0

Średnica Ø [±0,1 mm]

32 mm

Wysokość [±0,1 mm]

100 mm

Waga

536 g

307.50 z VAT / szt. + cena za transport

250.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
250.00 ZŁ
307.50 ZŁ
cena od 10 szt.
237.50 ZŁ
292.13 ZŁ
cena od 20 szt.
225.00 ZŁ
276.75 ZŁ

Nie wiesz gdzie kupić?

Zadzwoń i zapytaj +48 22 499 98 98 ewentualnie skontaktuj się poprzez formularz kontaktowy na naszej stronie.
Udźwig a także budowę elementów magnetycznych obliczysz w naszym kalkulatorze masy magnetycznej.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

SM 32x100 [2xM8] / N42 - separator magnetyczny

Specyfikacja/charakterystyka SM 32x100 [2xM8] / N42 - separator magnetyczny
właściwości
wartości
Nr kat.
130296
GTIN
5906301812890
Produkcja/Dystrybucja
Dhit sp. z o.o.
Kraj pochodzenia
Polska / Chiny / Niemcy
Kod celny
85059029
Średnica Ø
32 mm [±0,1 mm]
Wysokość
100 mm [±0,1 mm]
Waga
536 g [±0,1 mm]
Tolerancja wykonania
± 0.1 mm

Własności magnetyczne materiału N42

właściwości
wartości
jednostki
remanencja Br [Min. - Max.] ?
12.9-13.2
kGs
remanencja Br [Min. - Max.] ?
1290-1320
T
koercja bHc ?
10.8-12.0
kOe
koercja bHc ?
860-955
kA/m
faktyczna wewnętrzna siła iHc
≥ 12
kOe
faktyczna wewnętrzna siła iHc
≥ 955
kA/m
gęstość energii [Min. - Max.] ?
40-42
BH max MGOe
gęstość energii [Min. - Max.] ?
318-334
BH max KJ/m
max. temperatura ?
≤ 80
°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

właściwości
wartości
jednostki
Twardość Vickersa
≥550
Hv
Gęstość
≥7.4
g/cm3
Curie Temperatura TC
312 - 380
°C
Curie Temperatura TF
593 - 716
°F
Specyficzna oporność
150
μΩ⋅Cm
Siła wyginania
250
Mpa
Wytrzymałość na ściskanie
1000~1100
Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M)
(3-4) x 106
°C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M)
-(1-3) x 10-6
°C-1
Moduł Younga
1.7 x 104
kg/mm²

Porady zakupowe

Wkład do szuflad magnetycznych, nazywany również wałek magnetyczny, wykorzystuje oddziaływanie mocnych magnesów neodymowych, zamkniętych w rurze ze stali nierdzewnej AISI 304. Został zaprojektowany do separowania cząstek ferromagnetycznych z mieszanin przemysłowych, takich jak granulaty. Mechanizm opiera się na przyciąganiu magnetycznym, które skutecznie separują elementy ferromagnetyczne. Wymiary wkładu i rozstaw magnesów determinują zasięg pola magnetycznego. Tego typu wkłady są powszechnie stosowane w przemyśle spożywczym, zapewniając wysoką skuteczność. Wkład doskonale sprawdza się jako element szuflady magnetycznej, gwarantując wyjątkowo mocny efekt magnetyczny nawet w środowisku o wysokim zapyleniu.
Generalnie, separatory magnetyczne są przeznaczone do oddzielania elementów ferromagnetycznych. Jeśli puszki są wykonane z materiałów ferromagnetycznych, separator będzie w stanie je oddzielić. Jednakże, jeśli puszki są wykonane z materiałów nieferromagnetycznych, takich jak aluminium, separator nie będzie w stanie ich oddzielić.
Zgadza się, wałki magnetyczne są używane w sektorze żywnościowym aby oczyścić z zanieczyszczeń metalowych, takich jak żelazne odłamki czy pył żelazny. Nasze pręty magnetyczne skonstruowane zostały z wytrzymałej stali przeciw kwasowej, EN 1.4301, nadającej się do styczności z żywnością.
Wałki magnetyczne, często nazywane cylindrycznymi magnesami, znajdują zastosowanie w separacji metali, produkcji żywności oraz przetwarzaniu odpadów. Pomagają one w usuwaniu pyłu żelaznego podczas procesu separacji metali z innych materiałów.
Nasze wałki magnetyczne składają się z neodymowego magnesu umieszczonego w cylindrze rury z nierzewnej stali grubość ścianki 1mm.
Z obu stron wałka magnetycznego będą gwintowanymi otworami M8, umożliwiając łatwą instalację w maszynach lub szufladach filtrów magnetycznych. Możliwa jest również wersja "ślepa" przy separatorach ręcznych.
Pod względem sił magnetycznych, wałki wyróżniają się pod względem gęstości strumienia indukcji, linii sił magnetycznych oraz obszaru działania magnetycznego. Produkujemy je w materiałach N42 oraz N52.
Generalnie uważa się, że im silniejszy magnes, tym bardziej efektywnie. Ale, siła mocy magnesu zależy od od wysokości zastosowanego magnesu oraz jakości materiału [N42] czy [N52], jak również zależy to od obszaru aplikacji oraz konkretnych potrzeb. Standardowa temperatura pracy wałka magnetycznego to 80°C.
Jeśli magnes jest bardziej płaski, linie sił magnetycznych będą krótkie. Natomiast, gdy magnes jest gruby, linie sił są dłuższe i rozciągają się na większą odległość.
Do produkcji obudów separatorów magnetycznych - wałków, zazwyczaj stosuje się stal nierdzewną, w szczególności typy AISI 304, AISI 316 i AISI 316L.
W środowisku słoną wodą, stal AISI 316 jest zalecana ze względu na jej znakomitym właściwościom przeciwdziałającym korozji.
Wałki magnetyczne charakteryzują się unikalnym rozmieszczeniem biegunów oraz możliwością przyciągania substancji magnetycznych bezpośrednio na ich powierzchni, w odróżnieniu od innych separatorów które często używają złożone systemy filtracji.
Techniczne oznaczenia i terminy dotyczące separatorów magnetycznych obejmują m.in. skoku magnesów, biegunowości, i indukcji magnetycznej oraz rodzaju użytej stali.
Indukcję magnetyczną magnesu na wałku pomiar przeprowadza się korzystając z teslametru czy gaussomierza z sondą hallotronową, szukając najwyższej wartości pola magnetycznego w pobliżu bieguna magnetycznego. Rezultat weryfikujemy w tabeli wartości – najmniejsza to N30. Wszystkie oznaczenia niżej N27 czy N25 sugerują na recykling poniżej normy - nie nadają się.
Neodymowe wałki magnetyczne oferują wiele zalet, w tym doskonałą efektywność w separacji, mocne pole magnetyczne oraz trwałość. Natomiast do wad można zaliczyć wyższą cenę w porównaniu z innymi rodzajami magnesów oraz konieczność regularnej konserwacji.
Aby odpowiednio konserwować neodymowych wałków magnetycznych, należy należy je regularnie czyścić, unikając temperatur powyżej 80 stopni. Wałki nasi wałki mają wodoodporność IP67, więc jeśli nie są szczelne, magnesy wewnątrz mogą utlenić się i osłabnąć. Badania wałków zaleca się przeprowadzać raz na 24 miesiące. Należy być ostrożnym podczas użytkowania, gdyż istnieje ryzyko poszkodowania palców. Jeśli rura osłonowa ma grubość tylko 0,5 mm, może dojść do jej przecierania, co z kolei może spowodować problemy z rozszczelnieniem pręta magnetycznego i zanieczyszczeniem produktu. Zakres działania wałka jest równy jego średnicy fi25mm to około 25mm aktywny zasięg dla fi32 to około 40mm.
Wałki magnetyczne to cylindryczne magnesy neodymowe umieszczone w osłonie z kwasoodpornej stali nierdzewnej, które wykorzystywane są do usuwania metalowych zanieczyszczeń z surowców sypkich i lejnych. Znajdują zastosowanie w przemyśle spożywczym, recyklingu oraz przetwórstwie tworzyw sztucznych, gdzie niezbędne jest usunięcie metali żelaznych i opiłków żelaza.

Wady i zalety magnesów neodymowych NdFeB.

Oprócz ogromnej siły przyciągania, magnesy typu NdFeB cechują się następujące zalety:

  • Nie tracą mocy, nawet w ciągu blisko dziesięciu lat – spadek mocy wynosi tylko ~1% (na podstawie pomiarów),
  • Magnesy neodymowe pozostają znakomitą odpornością na magnetyczny zanik przez źródła pola magnetycznego,
  • Zastosowanie wyrafinowanej warstwy z metali szlachetnych (nikiel, złoto, srebro) powoduje, że element ma estetykę,
  • Powierzchnia magnesów neodymowych generuje maksymalne pole magnetyczne – dzięki temu są efektywne,
  • Wykonane z odpowiednio dobranych składników, magnesy te wykazują imponującą odporność na wysoką temperaturę, co umożliwia im działanie (zależnie od ich formy) w temperaturach aż do 230°C i wyżej...
  • W kontekście potencjał dokładnego kształtowania oraz adaptacji do nietypowych projektów, magnesy trwałe mogą być wytwarzane w bogatej palecie struktur i formatów, co umożliwia szerokie spektrum zastosowań,
  • Ogromne znaczenie w branżach zaawansowanych technologicznie – są powszechnie wykorzystywane w dyskach twardych, modułach napędowych, zaawansowanych przyrządach medycznych, jak również wielozadaniowych systemach produkcyjnych.
  • Dzięki wydajności na cm³, małe magnesy oferują dużą siłę działania, zajmując minimum miejsca,

Wady magnesów neo-dymowych:

  • Przy silnych uderzeniach mogą pękać, dlatego radzimy umieszczanie ich w mocnych obudowach. Obudowa z metalu zapewnia dodatkową ochronę przed uszkodzeniami, a także podnosi wytrzymałość magnesu.,
  • Magnesy neodymowe mogą być wrażliwe na wysokie temperatury. Jeśli planujesz użytkowanie ich w temperaturze przekraczających 80°C, rekomendujemy wybór naszych specjalnych magnesów [AH] zdolnych do pracy nawet w 230°C,
  • Z uwagi na podatność magnesów na korozję w wilgotnym środowisku, sugerujemy stosowanie magnesów wodoodpornych wykonanych z gumy, tworzywa sztucznego lub innego materiału stabilnego na wilgoć, w przypadku stosowania na zewnątrz,
  • Zalecamy osłonę - mocowanie magnetyczny, ze względu na trudności w realizacji nakrętek wewnątrz magnesu oraz bardziej skomplikowanych kształtów.
  • Możliwe niebezpieczeństwo związane z mikroskopijnymi częściami magnesów są ryzykowne, jeśli zostaną połknięte, co staje się kluczowe w kontekście ochrony zdrowia dzieci. Dodatkowo, małe elementy tych produktów są w stanie być problematyczne w diagnostyce medycznej w razie połknięcia.
  • Ze względu na kosztowne surowce, ich cena przekracza standardowe wartości,

Najlepsza nośność magnesu w idealnych parametrachco się na to składa?

Podana wytrzymałość magnesu stanowi optymalną wytrzymałość, ustalona w warunkach optymalnych, czyli:

  • z użyciem blachy ze stali niskowęglowej pełniącej rolę zwora magnetyczna
  • z grubością co najmniej 10 mm
  • o wygładzonej warstwie zewnętrznej
  • w warunkach całkowitego braku odstępu
  • w warunkach pionowego przyłożenia siły
  • w normalnych warunkach termicznych

Kluczowe elementy wpływające na udźwig

W praktyce nośność magnesu podlega wpływowi przez następujące aspekty, według malejącego znaczenia:

  • Szczelina między magnesem a blachą, gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje spadek udźwigu nawet o 50%.
  • Kierunek działania siły, ponieważ największy udźwig osiągamy przy prostopadłym przyłożeniu. Siła potrzebna do przesunięcia magnesu po blachach jest zazwyczaj kilkukrotnie mniejsza.
  • Grubość blachy, gdyż zbyt cienka płyta sprawia, że część strumienia magnetycznego nie jest wykorzystana i pozostaje bezużytecznie w powietrzu.
  • Materiał blachy, ponieważ większa zawartość węgla obniża nośność, a wyższa zawartość żelaza ją podnosi. Najlepszym wyborem jest stal o wysokiej przenikalności magnetycznej i dużym nasyceniu pola.
  • Powierzchnia blachy, ponieważ im bardziej gładka i polerowana, tym lepsze przyleganie i w konsekwencji większe nasycenie polem magnetycznym.
  • Temperatura pracy, gdyż wszystkie magnesy stałe mają ujemny współczynnik temperaturowy. Oznacza to, że w wysokich temperaturach są słabsze, a w ujemnych nieco silniejsze.

* Udźwig określano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.

Środki ostrożności

Kurz tz. proszek z magnesów neodymowych są łatwopalne

Unikaj wiercenia bądź obróbki mechanicznej magnesów neodymowych. Po rozkruszeniu w drobny mak lub pył, materiał ten jest bardzo łatwopalny.

Bardzo znaczące, abyś nie pozwolił na niekontrolowane zaciskanie się magnesów - nie kładź palców na ich drodze, gdy będą przesuwać się do siebie.

Magnesy neodymowe będą skaczą i razem o siebie w promieniu od kilku do prawie 10 cm od siebie. Jeśli masz palec pomiędzy lub na drodze przyciągających się magnesy, może dojść do dużego ścięcia albo nawet złamania.

W przypadku magnesów neodymowych nader szybko o ich ukruszenie.

Magnesy neodymowe są kruche i będą się łamać, jeśli pozwolimy im uderzyć ze sobą, nawet z odległości kilku centymetrów. Są one pokryte błyszczącym niklowaniem podobnie jak stal, jednak nie są one tak twarde. W sytuacji zderzenia się dwóch magnesów może dojść do wypadku rozrzutu kawałeczków w różnych kierunkach. W takiej sytuacji koniecznie chroń swoje oczy.

Magnesy nie mogą znajdować się w okolicach osób z rozrusznikiem serca.

Magnesy neodymowe wytwarzają silne pole magnetyczne. Skutkiem tego jest zakłócanie pracy symulatora serca. Dochodzi do tego, gdyż tego typu urządzenia mają funkcję jego dezaktywizacji w polu magnetycznym.

Uważaj, by nie zbliżać magnesów neodymowych do telewizora, portfela i dysku HDD komputera.

Pole magnetyczne, które jest generowane przez neodymowe magnesy może w sposób trwały niszczyć nośniki magnetyczne, np.: dyskietki, taśmy VHS, dyski HDD, karty kredytowe, magnetyczne karty identyfikacyjne, taśmy kasetowe magnetofonowe audio lub inne takie urządzenia. Magnesy mogą też niszczyć videa, telewizory, monitory komputerowe CRT. Pamiętaj nie nie umieszczać magnesów neodymowych w pobliżu tych urządzeń elektronicznych.

Pod żadnym pozorem nie powinieneś zbliżać magnesów neodymowych do GPSa i smartfona

Neodymowe magnesy są źródłem mocnego pola magnetycznego, które jest powodem zakłóceń w magnetometrach oraz kompasach wykorzystywanych w nawigacji i wewnętrzne kompasy urządzeń takich jak smartfony oraz nawigacja GPS.

Magnesy neodymowe w porównaniu do ferrytowych (tych z głośników) są ponad 10-razy mocniejsze ich siła może Cię zszokować.

Na naszej stronie znajdziesz informacje na temat tego, jak używać magnesy neodymowe. To da szansę Tobie uniknąć uszkodzeń ciała oraz magnesów.

Powłoka magnesu to nikiel uważaj na alergie na nikiel.

Badania wyraźnie pokazują niewielki odsetek osób, które cierpią na alergię na metale takie jak nikiel. W chwili reakcji alergicznej częstym objawem jest zaczerwienienie i wysypka skórna. W przypadku pojawiania się alergii na nikiel, możesz spróbować ubrać rękawiczki bądź po prostu stronić od kontaktu z niklowanymi neodymowymi magnesami.

Neodymowe magnesy mogą ulegać rozmagnesowaniu w dużych temperaturach.

Magnesy pokazały, że zachowują swoją skuteczność nawet w temperaturze 80 stopni Celsjusza lub 175 stopni Farenheita. Temperatura może ulegać zmianie w zależności od rodzaju, kształtu i wykorzystania danego magnesu.

  Magnesy to nie zabawki nie powinny bawić się nimi dzieci.

Magnesów neodymowych nie wolno traktować jako zabawki dla dzieci. Podczas niekontrolowanego łączenia ich ze sobą części, które się ukruszą mogą uszkodzić oczy, a małe dzieci mogą połknąć magnesy co może doprowadzić do niedrożności jelit, a w tej sytuacji jedynym ratunkiem jest operacja usunięcia magnesów.

Zasady bezpieczeństwa!

Żebyś wiedział jak silne są magnesy neodymowe chodzi o mocne pole magnetyczne zobacz artykuł - Niebezpieczne mocne magnesy neodymowe.

logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98