SM 25x300 [2xM8] / N42 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130295
GTIN/EAN: 5906301812883
Średnica Ø
25 mm [±1 mm]
Wysokość
300 mm [±1 mm]
Waga
1160 g
Strumień magnetyczny
~ 6 500 Gauss [±5%]
836.40 ZŁ z VAT / szt. + cena za transport
680.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość korzystając z
formularz zapytania
na naszej stronie.
Parametry i budowę magnesu przetestujesz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - SM 25x300 [2xM8] / N42 - separator magnetyczny
Specyfikacja / charakterystyka - SM 25x300 [2xM8] / N42 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130295 |
| GTIN/EAN | 5906301812883 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±1 mm] |
| Wysokość | 300 mm [±1 mm] |
| Waga | 1160 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 6 500 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 11 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N42
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.9-13.2 | kGs |
| remanencja Br [min. - maks.] ? | 1290-1320 | mT |
| koercja bHc ? | 10.8-12.0 | kOe |
| koercja bHc ? | 860-955 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 40-42 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 318-334 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Tabela 1: Konstrukcja wałka
SM 25x300 [2xM8] / N42
| Parametr | Wartość | Opis / Jednostka |
|---|---|---|
| Średnica (Ø) | 25 | mm |
| Długość całkowita | 300 | mm (L) |
| Długość aktywna | 264 | mm |
| Liczba sekcji | 11 | modułów |
| Strefa martwa | 36 | mm (2x 18mm starter) |
| Waga (szacowana) | ~1119 | g |
| Pow. aktywna | 207 | cm² (Area) |
| Materiał obudowy | AISI 304 | 1.4301 (Inox) |
| Wykończenie | Ra < 0.8 µm | Polerowane |
| Klasa temp. | 80°C | Standard (N) |
| Spadek siły (przy max °C) | -12.8% | Strata odwracalna (fizyka) |
| Siła (obliczona) | 10.6 | kg (teoret.) |
| Indukcja (pow.) | ~6 500 | Gauss (Max) |
Wykres 2: Profil pola (11 sekcji)
Wykres 3: Wydajność temperaturowa
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o grubości przynajmniej 10 mm
- z płaszczyzną oczyszczoną i gładką
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda płyta nie przyjmuje całego pola, przez co część mocy marnuje się w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Ostrzeżenie dla alergików
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Magnesy są kruche
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Tylko dla dorosłych
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Nie lekceważ mocy
Używaj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Nie zbliżaj do komputera
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Urazy ciała
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Smartfony i tablety
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
