MW 8x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010105
GTIN/EAN: 5906301811046
Średnica Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
1.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.17 kg / 21.31 N
Indukcja magnetyczna
483.41 mT / 4834 Gs
Powłoka
[NiCuNi] nikiel
0.836 ZŁ z VAT / szt. + cena za transport
0.680 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo daj znać przez
formularz zgłoszeniowy
w sekcji kontakt.
Właściwości a także kształt magnesów wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MW 8x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010105 |
| GTIN/EAN | 5906301811046 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 1.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.17 kg / 21.31 N |
| Indukcja magnetyczna ~ ? | 483.41 mT / 4834 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Niniejsze dane są bezpośredni efekt kalkulacji fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4830 Gs
483.0 mT
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
mocny |
| 1 mm |
3655 Gs
365.5 mT
|
1.24 kg / 2.74 lbs
1242.8 g / 12.2 N
|
niskie ryzyko |
| 2 mm |
2610 Gs
261.0 mT
|
0.63 kg / 1.40 lbs
633.9 g / 6.2 N
|
niskie ryzyko |
| 3 mm |
1825 Gs
182.5 mT
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
niskie ryzyko |
| 5 mm |
915 Gs
91.5 mT
|
0.08 kg / 0.17 lbs
77.9 g / 0.8 N
|
niskie ryzyko |
| 10 mm |
234 Gs
23.4 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
|
niskie ryzyko |
| 15 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 2 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.65 kg / 1.44 lbs
651.0 g / 6.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| 1 mm |
|
0.54 kg / 1.20 lbs
542.5 g / 5.3 N
|
| 2 mm |
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
| 3 mm |
|
1.63 kg / 3.59 lbs
1627.5 g / 16.0 N
|
| 5 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 10 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 11 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 12 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
OK |
| 40 °C | -2.2% |
2.12 kg / 4.68 lbs
2122.3 g / 20.8 N
|
OK |
| 60 °C | -4.4% |
2.07 kg / 4.57 lbs
2074.5 g / 20.4 N
|
OK |
| 80 °C | -6.6% |
2.03 kg / 4.47 lbs
2026.8 g / 19.9 N
|
|
| 100 °C | -28.8% |
1.55 kg / 3.41 lbs
1545.0 g / 15.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 8x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
7.23 kg / 15.94 lbs
5 742 Gs
|
1.08 kg / 2.39 lbs
1084 g / 10.6 N
|
N/A |
| 1 mm |
5.58 kg / 12.31 lbs
8 490 Gs
|
0.84 kg / 1.85 lbs
838 g / 8.2 N
|
5.03 kg / 11.08 lbs
~0 Gs
|
| 2 mm |
4.14 kg / 9.13 lbs
7 310 Gs
|
0.62 kg / 1.37 lbs
621 g / 6.1 N
|
3.73 kg / 8.21 lbs
~0 Gs
|
| 3 mm |
2.98 kg / 6.58 lbs
6 207 Gs
|
0.45 kg / 0.99 lbs
448 g / 4.4 N
|
2.69 kg / 5.92 lbs
~0 Gs
|
| 5 mm |
1.48 kg / 3.26 lbs
4 369 Gs
|
0.22 kg / 0.49 lbs
222 g / 2.2 N
|
1.33 kg / 2.93 lbs
~0 Gs
|
| 10 mm |
0.26 kg / 0.57 lbs
1 830 Gs
|
0.04 kg / 0.09 lbs
39 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
468 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.31 km/h
(9.53 m/s)
|
0.09 J | |
| 30 mm |
59.35 km/h
(16.49 m/s)
|
0.26 J | |
| 50 mm |
76.62 km/h
(21.28 m/s)
|
0.43 J | |
| 100 mm |
108.35 km/h
(30.10 m/s)
|
0.85 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 450 Mx | 24.5 µWb |
| Współczynnik Pc | 0.68 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.17 kg | Standard |
| Woda (dno rzeki) |
2.48 kg
(+0.31 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.68
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (brak powłok)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka stal nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig wyznaczano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Nie dawać dzieciom
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Reakcje alergiczne
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
Uwaga na odpryski
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Siła neodymu
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Zagrożenie dla elektroniki
Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
