MW 33x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010058
GTIN/EAN: 5906301810575
Średnica Ø
33 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
192.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.84 kg / 351.54 N
Indukcja magnetyczna
543.05 mT / 5430 Gs
Powłoka
[NiCuNi] nikiel
52.89 ZŁ z VAT / szt. + cena za transport
43.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub zostaw wiadomość przez
formularz
na naszej stronie.
Masę oraz budowę magnesu neodymowego obliczysz w naszym
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 33x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 33x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010058 |
| GTIN/EAN | 5906301810575 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 33 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 192.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.84 kg / 351.54 N |
| Indukcja magnetyczna ~ ? | 543.05 mT / 5430 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe dane stanowią rezultat analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 33x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5429 Gs
542.9 mT
|
35.84 kg / 35840.0 g
351.6 N
|
krytyczny poziom |
| 1 mm |
5098 Gs
509.8 mT
|
31.60 kg / 31600.1 g
310.0 N
|
krytyczny poziom |
| 2 mm |
4765 Gs
476.5 mT
|
27.60 kg / 27601.7 g
270.8 N
|
krytyczny poziom |
| 3 mm |
4436 Gs
443.6 mT
|
23.93 kg / 23930.4 g
234.8 N
|
krytyczny poziom |
| 5 mm |
3810 Gs
381.0 mT
|
17.65 kg / 17650.2 g
173.1 N
|
krytyczny poziom |
| 10 mm |
2518 Gs
251.8 mT
|
7.71 kg / 7709.5 g
75.6 N
|
uwaga |
| 15 mm |
1650 Gs
165.0 mT
|
3.31 kg / 3312.1 g
32.5 N
|
uwaga |
| 20 mm |
1105 Gs
110.5 mT
|
1.49 kg / 1485.1 g
14.6 N
|
niskie ryzyko |
| 30 mm |
546 Gs
54.6 mT
|
0.36 kg / 361.9 g
3.5 N
|
niskie ryzyko |
| 50 mm |
184 Gs
18.4 mT
|
0.04 kg / 41.4 g
0.4 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 33x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.17 kg / 7168.0 g
70.3 N
|
| 1 mm | Stal (~0.2) |
6.32 kg / 6320.0 g
62.0 N
|
| 2 mm | Stal (~0.2) |
5.52 kg / 5520.0 g
54.2 N
|
| 3 mm | Stal (~0.2) |
4.79 kg / 4786.0 g
47.0 N
|
| 5 mm | Stal (~0.2) |
3.53 kg / 3530.0 g
34.6 N
|
| 10 mm | Stal (~0.2) |
1.54 kg / 1542.0 g
15.1 N
|
| 15 mm | Stal (~0.2) |
0.66 kg / 662.0 g
6.5 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 298.0 g
2.9 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 72.0 g
0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 33x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.75 kg / 10752.0 g
105.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.17 kg / 7168.0 g
70.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.58 kg / 3584.0 g
35.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.92 kg / 17920.0 g
175.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 33x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.79 kg / 1792.0 g
17.6 N
|
| 1 mm |
|
4.48 kg / 4480.0 g
43.9 N
|
| 2 mm |
|
8.96 kg / 8960.0 g
87.9 N
|
| 5 mm |
|
22.40 kg / 22400.0 g
219.7 N
|
| 10 mm |
|
35.84 kg / 35840.0 g
351.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 33x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.84 kg / 35840.0 g
351.6 N
|
OK |
| 40 °C | -2.2% |
35.05 kg / 35051.5 g
343.9 N
|
OK |
| 60 °C | -4.4% |
34.26 kg / 34263.0 g
336.1 N
|
OK |
| 80 °C | -6.6% |
33.47 kg / 33474.6 g
328.4 N
|
|
| 100 °C | -28.8% |
25.52 kg / 25518.1 g
250.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 33x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
155.43 kg / 155426 g
1524.7 N
5 974 Gs
|
N/A |
| 1 mm |
146.19 kg / 146188 g
1434.1 N
10 531 Gs
|
131.57 kg / 131569 g
1290.7 N
~0 Gs
|
| 2 mm |
137.04 kg / 137039 g
1344.4 N
10 196 Gs
|
123.34 kg / 123335 g
1209.9 N
~0 Gs
|
| 3 mm |
128.20 kg / 128202 g
1257.7 N
9 862 Gs
|
115.38 kg / 115381 g
1131.9 N
~0 Gs
|
| 5 mm |
111.55 kg / 111553 g
1094.3 N
9 199 Gs
|
100.40 kg / 100398 g
984.9 N
~0 Gs
|
| 10 mm |
76.54 kg / 76543 g
750.9 N
7 620 Gs
|
68.89 kg / 68889 g
675.8 N
~0 Gs
|
| 20 mm |
33.43 kg / 33433 g
328.0 N
5 036 Gs
|
30.09 kg / 30090 g
295.2 N
~0 Gs
|
| 50 mm |
3.08 kg / 3077 g
30.2 N
1 528 Gs
|
2.77 kg / 2770 g
27.2 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 33x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 33x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.50 km/h
(4.31 m/s)
|
1.78 J | |
| 30 mm |
23.99 km/h
(6.66 m/s)
|
4.27 J | |
| 50 mm |
30.80 km/h
(8.55 m/s)
|
7.04 J | |
| 100 mm |
43.52 km/h
(12.09 m/s)
|
14.06 J |
Tabela 9: Parametry powłoki (trwałość)
MW 33x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 33x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 47 447 Mx | 474.5 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 33x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.84 kg | Standard |
| Woda (dno rzeki) |
41.04 kg
(+5.20 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy bezpośrednim styku (bez powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet mikroskopijna odległość (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia marnuje się na drugą stronę.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ochrona dłoni
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Wpływ na smartfony
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie magnetometrów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Bezpieczna praca
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Wpływ na zdrowie
Osoby z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Produkt nie dla dzieci
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od niepowołanych osób.
Samozapłon
Proszek generowany podczas obróbki magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
