MW 28.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010051
GTIN/EAN: 5906301810506
Średnica Ø
28.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
49.2 g
Kierunek magnesowania
→ diametralny
Udźwig
20.74 kg / 203.46 N
Indukcja magnetyczna
352.70 mT / 3527 Gs
Powłoka
[NiCuNi] nikiel
23.99 ZŁ z VAT / szt. + cena za transport
19.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie zostaw wiadomość przez
formularz zapytania
przez naszą stronę.
Siłę i wygląd magnesów neodymowych wyliczysz w naszym
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja techniczna produktu - MW 28.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 28.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010051 |
| GTIN/EAN | 5906301810506 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 28.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 49.2 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 20.74 kg / 203.46 N |
| Indukcja magnetyczna ~ ? | 352.70 mT / 3527 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Przedstawione informacje stanowią rezultat analizy fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 28.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3526 Gs
352.6 mT
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
niebezpieczny! |
| 1 mm |
3327 Gs
332.7 mT
|
18.47 kg / 40.71 lbs
18466.2 g / 181.2 N
|
niebezpieczny! |
| 2 mm |
3111 Gs
311.1 mT
|
16.14 kg / 35.59 lbs
16142.6 g / 158.4 N
|
niebezpieczny! |
| 3 mm |
2886 Gs
288.6 mT
|
13.90 kg / 30.63 lbs
13895.8 g / 136.3 N
|
niebezpieczny! |
| 5 mm |
2438 Gs
243.8 mT
|
9.91 kg / 21.85 lbs
9912.0 g / 97.2 N
|
średnie ryzyko |
| 10 mm |
1497 Gs
149.7 mT
|
3.74 kg / 8.24 lbs
3739.6 g / 36.7 N
|
średnie ryzyko |
| 15 mm |
903 Gs
90.3 mT
|
1.36 kg / 3.00 lbs
1359.1 g / 13.3 N
|
bezpieczny |
| 20 mm |
560 Gs
56.0 mT
|
0.52 kg / 1.15 lbs
523.5 g / 5.1 N
|
bezpieczny |
| 30 mm |
245 Gs
24.5 mT
|
0.10 kg / 0.22 lbs
100.4 g / 1.0 N
|
bezpieczny |
| 50 mm |
71 Gs
7.1 mT
|
0.01 kg / 0.02 lbs
8.5 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 28.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
|
| 1 mm | Stal (~0.2) |
3.69 kg / 8.14 lbs
3694.0 g / 36.2 N
|
| 2 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
| 3 mm | Stal (~0.2) |
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 5 mm | Stal (~0.2) |
1.98 kg / 4.37 lbs
1982.0 g / 19.4 N
|
| 10 mm | Stal (~0.2) |
0.75 kg / 1.65 lbs
748.0 g / 7.3 N
|
| 15 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
272.0 g / 2.7 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 28.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.22 kg / 13.72 lbs
6222.0 g / 61.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2074.0 g / 20.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.37 kg / 22.86 lbs
10370.0 g / 101.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 28.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.29 lbs
1037.0 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.72 lbs
2592.5 g / 25.4 N
|
| 2 mm |
|
5.19 kg / 11.43 lbs
5185.0 g / 50.9 N
|
| 3 mm |
|
7.78 kg / 17.15 lbs
7777.5 g / 76.3 N
|
| 5 mm |
|
12.96 kg / 28.58 lbs
12962.5 g / 127.2 N
|
| 10 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
| 11 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
| 12 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 28.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
OK |
| 40 °C | -2.2% |
20.28 kg / 44.72 lbs
20283.7 g / 199.0 N
|
OK |
| 60 °C | -4.4% |
19.83 kg / 43.71 lbs
19827.4 g / 194.5 N
|
|
| 80 °C | -6.6% |
19.37 kg / 42.71 lbs
19371.2 g / 190.0 N
|
|
| 100 °C | -28.8% |
14.77 kg / 32.56 lbs
14766.9 g / 144.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 28.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
50.29 kg / 110.86 lbs
5 022 Gs
|
7.54 kg / 16.63 lbs
7543 g / 74.0 N
|
N/A |
| 1 mm |
47.58 kg / 104.90 lbs
6 860 Gs
|
7.14 kg / 15.74 lbs
7138 g / 70.0 N
|
42.83 kg / 94.41 lbs
~0 Gs
|
| 2 mm |
44.77 kg / 98.71 lbs
6 655 Gs
|
6.72 kg / 14.81 lbs
6716 g / 65.9 N
|
40.30 kg / 88.84 lbs
~0 Gs
|
| 3 mm |
41.95 kg / 92.48 lbs
6 441 Gs
|
6.29 kg / 13.87 lbs
6292 g / 61.7 N
|
37.75 kg / 83.23 lbs
~0 Gs
|
| 5 mm |
36.38 kg / 80.20 lbs
5 999 Gs
|
5.46 kg / 12.03 lbs
5457 g / 53.5 N
|
32.74 kg / 72.18 lbs
~0 Gs
|
| 10 mm |
24.03 kg / 52.98 lbs
4 876 Gs
|
3.60 kg / 7.95 lbs
3605 g / 35.4 N
|
21.63 kg / 47.69 lbs
~0 Gs
|
| 20 mm |
9.07 kg / 19.99 lbs
2 995 Gs
|
1.36 kg / 3.00 lbs
1360 g / 13.3 N
|
8.16 kg / 17.99 lbs
~0 Gs
|
| 50 mm |
0.53 kg / 1.17 lbs
726 Gs
|
0.08 kg / 0.18 lbs
80 g / 0.8 N
|
0.48 kg / 1.06 lbs
~0 Gs
|
| 60 mm |
0.24 kg / 0.54 lbs
491 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.48 lbs
~0 Gs
|
| 70 mm |
0.12 kg / 0.26 lbs
345 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 80 mm |
0.06 kg / 0.14 lbs
250 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.08 lbs
187 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
143 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 28.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 28.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.92 km/h
(6.37 m/s)
|
1.00 J | |
| 30 mm |
35.97 km/h
(9.99 m/s)
|
2.46 J | |
| 50 mm |
46.31 km/h
(12.86 m/s)
|
4.07 J | |
| 100 mm |
65.48 km/h
(18.19 m/s)
|
8.14 J |
Tabela 9: Parametry powłoki (trwałość)
MW 28.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 28.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 347 Mx | 243.5 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 28.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.74 kg | Standard |
| Woda (dno rzeki) |
23.75 kg
(+3.01 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – występowanie ciała obcego (farba, taśma, szczelina) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Temperatura pracy
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Podatność na pękanie
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Obróbka mechaniczna
Pył powstający podczas szlifowania magnesów jest wybuchowy. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Potężne pole
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Nośniki danych
Potężne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Produkt nie dla dzieci
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Urazy ciała
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Dla uczulonych
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Smartfony i tablety
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
