MW 21.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010045
GTIN/EAN: 5906301810445
Średnica Ø
21.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
28.25 g
Kierunek magnesowania
→ diametralny
Udźwig
14.65 kg / 143.71 N
Indukcja magnetyczna
417.89 mT / 4179 Gs
Powłoka
[NiCuNi] nikiel
15.50 ZŁ z VAT / szt. + cena za transport
12.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo zostaw wiadomość przez
formularz kontaktowy
na naszej stronie.
Udźwig oraz budowę magnesów neodymowych skontrolujesz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MW 21.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 21.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010045 |
| GTIN/EAN | 5906301810445 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 21.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 28.25 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 14.65 kg / 143.71 N |
| Indukcja magnetyczna ~ ? | 417.89 mT / 4179 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Przedstawione informacje stanowią rezultat kalkulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 21.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4178 Gs
417.8 mT
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
niebezpieczny! |
| 1 mm |
3830 Gs
383.0 mT
|
12.31 kg / 27.15 lbs
12314.7 g / 120.8 N
|
niebezpieczny! |
| 2 mm |
3466 Gs
346.6 mT
|
10.08 kg / 22.23 lbs
10083.5 g / 98.9 N
|
niebezpieczny! |
| 3 mm |
3104 Gs
310.4 mT
|
8.09 kg / 17.83 lbs
8086.3 g / 79.3 N
|
uwaga |
| 5 mm |
2432 Gs
243.2 mT
|
4.97 kg / 10.95 lbs
4966.5 g / 48.7 N
|
uwaga |
| 10 mm |
1257 Gs
125.7 mT
|
1.33 kg / 2.93 lbs
1327.0 g / 13.0 N
|
słaby uchwyt |
| 15 mm |
671 Gs
67.1 mT
|
0.38 kg / 0.83 lbs
378.5 g / 3.7 N
|
słaby uchwyt |
| 20 mm |
386 Gs
38.6 mT
|
0.13 kg / 0.28 lbs
125.0 g / 1.2 N
|
słaby uchwyt |
| 30 mm |
156 Gs
15.6 mT
|
0.02 kg / 0.04 lbs
20.4 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 21.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.93 kg / 6.46 lbs
2930.0 g / 28.7 N
|
| 1 mm | Stal (~0.2) |
2.46 kg / 5.43 lbs
2462.0 g / 24.2 N
|
| 2 mm | Stal (~0.2) |
2.02 kg / 4.44 lbs
2016.0 g / 19.8 N
|
| 3 mm | Stal (~0.2) |
1.62 kg / 3.57 lbs
1618.0 g / 15.9 N
|
| 5 mm | Stal (~0.2) |
0.99 kg / 2.19 lbs
994.0 g / 9.8 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 21.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.40 kg / 9.69 lbs
4395.0 g / 43.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.93 kg / 6.46 lbs
2930.0 g / 28.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.47 kg / 3.23 lbs
1465.0 g / 14.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.33 kg / 16.15 lbs
7325.0 g / 71.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 21.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 1.61 lbs
732.5 g / 7.2 N
|
| 1 mm |
|
1.83 kg / 4.04 lbs
1831.3 g / 18.0 N
|
| 2 mm |
|
3.66 kg / 8.07 lbs
3662.5 g / 35.9 N
|
| 3 mm |
|
5.49 kg / 12.11 lbs
5493.8 g / 53.9 N
|
| 5 mm |
|
9.16 kg / 20.19 lbs
9156.3 g / 89.8 N
|
| 10 mm |
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
| 11 mm |
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
| 12 mm |
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 21.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
OK |
| 40 °C | -2.2% |
14.33 kg / 31.59 lbs
14327.7 g / 140.6 N
|
OK |
| 60 °C | -4.4% |
14.01 kg / 30.88 lbs
14005.4 g / 137.4 N
|
|
| 80 °C | -6.6% |
13.68 kg / 30.17 lbs
13683.1 g / 134.2 N
|
|
| 100 °C | -28.8% |
10.43 kg / 23.00 lbs
10430.8 g / 102.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 21.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
40.53 kg / 89.35 lbs
5 433 Gs
|
6.08 kg / 13.40 lbs
6079 g / 59.6 N
|
N/A |
| 1 mm |
37.31 kg / 82.26 lbs
8 017 Gs
|
5.60 kg / 12.34 lbs
5597 g / 54.9 N
|
33.58 kg / 74.03 lbs
~0 Gs
|
| 2 mm |
34.07 kg / 75.11 lbs
7 660 Gs
|
5.11 kg / 11.27 lbs
5110 g / 50.1 N
|
30.66 kg / 67.60 lbs
~0 Gs
|
| 3 mm |
30.92 kg / 68.16 lbs
7 297 Gs
|
4.64 kg / 10.22 lbs
4637 g / 45.5 N
|
27.82 kg / 61.34 lbs
~0 Gs
|
| 5 mm |
25.04 kg / 55.20 lbs
6 567 Gs
|
3.76 kg / 8.28 lbs
3756 g / 36.8 N
|
22.54 kg / 49.68 lbs
~0 Gs
|
| 10 mm |
13.74 kg / 30.29 lbs
4 865 Gs
|
2.06 kg / 4.54 lbs
2061 g / 20.2 N
|
12.37 kg / 27.26 lbs
~0 Gs
|
| 20 mm |
3.67 kg / 8.09 lbs
2 515 Gs
|
0.55 kg / 1.21 lbs
551 g / 5.4 N
|
3.30 kg / 7.28 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.29 lbs
476 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 60 mm |
0.06 kg / 0.12 lbs
312 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
214 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
153 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
113 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 21.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 21.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.23 km/h
(6.73 m/s)
|
0.64 J | |
| 30 mm |
39.81 km/h
(11.06 m/s)
|
1.73 J | |
| 50 mm |
51.36 km/h
(14.27 m/s)
|
2.87 J | |
| 100 mm |
72.63 km/h
(20.17 m/s)
|
5.75 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 21.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 21.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 059 Mx | 160.6 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 21.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.65 kg | Standard |
| Woda (dno rzeki) |
16.77 kg
(+2.12 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża siłę trzymania.
Ostrzeżenia
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Karty i dyski
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Interferencja magnetyczna
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Interferencja medyczna
Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
Zasady obsługi
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Alergia na nikiel
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Zagrożenie fizyczne
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Zagrożenie dla najmłodszych
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
