MW 21.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010045
GTIN/EAN: 5906301810445
Średnica Ø
21.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
28.25 g
Kierunek magnesowania
→ diametralny
Udźwig
14.65 kg / 143.71 N
Indukcja magnetyczna
417.89 mT / 4179 Gs
Powłoka
[NiCuNi] nikiel
15.50 ZŁ z VAT / szt. + cena za transport
12.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo daj znać korzystając z
formularz zgłoszeniowy
na stronie kontakt.
Masę oraz formę magnesów neodymowych skontrolujesz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 21.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 21.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010045 |
| GTIN/EAN | 5906301810445 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 21.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 28.25 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 14.65 kg / 143.71 N |
| Indukcja magnetyczna ~ ? | 417.89 mT / 4179 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione dane są wynik kalkulacji fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 21.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4178 Gs
417.8 mT
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
miażdżący |
| 1 mm |
3830 Gs
383.0 mT
|
12.31 kg / 27.15 lbs
12314.7 g / 120.8 N
|
miażdżący |
| 2 mm |
3466 Gs
346.6 mT
|
10.08 kg / 22.23 lbs
10083.5 g / 98.9 N
|
miażdżący |
| 3 mm |
3104 Gs
310.4 mT
|
8.09 kg / 17.83 lbs
8086.3 g / 79.3 N
|
średnie ryzyko |
| 5 mm |
2432 Gs
243.2 mT
|
4.97 kg / 10.95 lbs
4966.5 g / 48.7 N
|
średnie ryzyko |
| 10 mm |
1257 Gs
125.7 mT
|
1.33 kg / 2.93 lbs
1327.0 g / 13.0 N
|
słaby uchwyt |
| 15 mm |
671 Gs
67.1 mT
|
0.38 kg / 0.83 lbs
378.5 g / 3.7 N
|
słaby uchwyt |
| 20 mm |
386 Gs
38.6 mT
|
0.13 kg / 0.28 lbs
125.0 g / 1.2 N
|
słaby uchwyt |
| 30 mm |
156 Gs
15.6 mT
|
0.02 kg / 0.04 lbs
20.4 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 21.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.93 kg / 6.46 lbs
2930.0 g / 28.7 N
|
| 1 mm | Stal (~0.2) |
2.46 kg / 5.43 lbs
2462.0 g / 24.2 N
|
| 2 mm | Stal (~0.2) |
2.02 kg / 4.44 lbs
2016.0 g / 19.8 N
|
| 3 mm | Stal (~0.2) |
1.62 kg / 3.57 lbs
1618.0 g / 15.9 N
|
| 5 mm | Stal (~0.2) |
0.99 kg / 2.19 lbs
994.0 g / 9.8 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 21.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.40 kg / 9.69 lbs
4395.0 g / 43.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.93 kg / 6.46 lbs
2930.0 g / 28.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.47 kg / 3.23 lbs
1465.0 g / 14.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.33 kg / 16.15 lbs
7325.0 g / 71.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 21.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 1.61 lbs
732.5 g / 7.2 N
|
| 1 mm |
|
1.83 kg / 4.04 lbs
1831.3 g / 18.0 N
|
| 2 mm |
|
3.66 kg / 8.07 lbs
3662.5 g / 35.9 N
|
| 3 mm |
|
5.49 kg / 12.11 lbs
5493.8 g / 53.9 N
|
| 5 mm |
|
9.16 kg / 20.19 lbs
9156.3 g / 89.8 N
|
| 10 mm |
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
| 11 mm |
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
| 12 mm |
|
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 21.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
|
OK |
| 40 °C | -2.2% |
14.33 kg / 31.59 lbs
14327.7 g / 140.6 N
|
OK |
| 60 °C | -4.4% |
14.01 kg / 30.88 lbs
14005.4 g / 137.4 N
|
|
| 80 °C | -6.6% |
13.68 kg / 30.17 lbs
13683.1 g / 134.2 N
|
|
| 100 °C | -28.8% |
10.43 kg / 23.00 lbs
10430.8 g / 102.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 21.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
40.53 kg / 89.35 lbs
5 433 Gs
|
6.08 kg / 13.40 lbs
6079 g / 59.6 N
|
N/A |
| 1 mm |
37.31 kg / 82.26 lbs
8 017 Gs
|
5.60 kg / 12.34 lbs
5597 g / 54.9 N
|
33.58 kg / 74.03 lbs
~0 Gs
|
| 2 mm |
34.07 kg / 75.11 lbs
7 660 Gs
|
5.11 kg / 11.27 lbs
5110 g / 50.1 N
|
30.66 kg / 67.60 lbs
~0 Gs
|
| 3 mm |
30.92 kg / 68.16 lbs
7 297 Gs
|
4.64 kg / 10.22 lbs
4637 g / 45.5 N
|
27.82 kg / 61.34 lbs
~0 Gs
|
| 5 mm |
25.04 kg / 55.20 lbs
6 567 Gs
|
3.76 kg / 8.28 lbs
3756 g / 36.8 N
|
22.54 kg / 49.68 lbs
~0 Gs
|
| 10 mm |
13.74 kg / 30.29 lbs
4 865 Gs
|
2.06 kg / 4.54 lbs
2061 g / 20.2 N
|
12.37 kg / 27.26 lbs
~0 Gs
|
| 20 mm |
3.67 kg / 8.09 lbs
2 515 Gs
|
0.55 kg / 1.21 lbs
551 g / 5.4 N
|
3.30 kg / 7.28 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.29 lbs
476 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 60 mm |
0.06 kg / 0.12 lbs
312 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
214 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
153 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
113 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 21.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 21.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.23 km/h
(6.73 m/s)
|
0.64 J | |
| 30 mm |
39.81 km/h
(11.06 m/s)
|
1.73 J | |
| 50 mm |
51.36 km/h
(14.27 m/s)
|
2.87 J | |
| 100 mm |
72.63 km/h
(20.17 m/s)
|
5.75 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 21.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 21.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 059 Mx | 160.6 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 21.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.65 kg | Standard |
| Woda (dno rzeki) |
16.77 kg
(+2.12 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- z wykorzystaniem podłoża ze stali o wysokiej przenikalności, która służy jako idealny przewodnik strumienia
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak powłok)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Praktyczny udźwig: czynniki wpływające
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
BHP przy magnesach
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Reakcje alergiczne
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Bezpieczna praca
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Trwała utrata siły
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Zagrożenie dla najmłodszych
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Implanty medyczne
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może zakłócić pracę implantu.
