Magnesy neodymowe: siła, której szukasz

Potrzebujesz niezawodnego pola magnetycznego? Oferujemy bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. Są one idealne do użytku w domu, garażu oraz modelarstwa. Sprawdź naszą ofertę w naszym magazynie.

poznaj pełną ofertę

Magnet fishing: mocne zestawy F200/F400

Zacznij swoje hobby z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w trudnych warunkach wodnych.

znajdź sprzęt do poszukiwań

Niezawodne uchwyty z gwintem

Profesjonalne rozwiązania do montażu bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają szybkie usprawnienie pracy na magazynach. Są niezastąpione przy instalacji lamp, czujników oraz reklam.

zobacz dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, wyślemy dziś!

Dhit sp. z o.o.
Produkt na zamówienie Wysyłamy za 3-5 dni

MW 21.9x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010045

GTIN/EAN: 5906301810445

Średnica Ø

21.9 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

28.25 g

Kierunek magnesowania

→ diametralny

Udźwig

14.65 kg / 143.71 N

Indukcja magnetyczna

417.89 mT / 4179 Gs

Powłoka

[NiCuNi] nikiel

15.50 z VAT / szt. + cena za transport

12.60 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
12.60 ZŁ
15.50 ZŁ
cena od 50 szt.
11.84 ZŁ
14.57 ZŁ
cena od 200 szt.
11.09 ZŁ
13.64 ZŁ
Chcesz się targować?

Zadzwoń już teraz +48 22 499 98 98 lub napisz za pomocą formularz na stronie kontakt.
Moc i kształt magnesów sprawdzisz w naszym narzędziu online do obliczeń.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Dane techniczne produktu - MW 21.9x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 21.9x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010045
GTIN/EAN 5906301810445
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 21.9 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 28.25 g
Kierunek magnesowania → diametralny
Udźwig ~ ? 14.65 kg / 143.71 N
Indukcja magnetyczna ~ ? 417.89 mT / 4179 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 21.9x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu neodymowego - dane

Poniższe wartości stanowią wynik symulacji matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.

Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MW 21.9x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 4178 Gs
417.8 mT
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
niebezpieczny!
1 mm 3830 Gs
383.0 mT
12.31 kg / 27.15 lbs
12314.7 g / 120.8 N
niebezpieczny!
2 mm 3466 Gs
346.6 mT
10.08 kg / 22.23 lbs
10083.5 g / 98.9 N
niebezpieczny!
3 mm 3104 Gs
310.4 mT
8.09 kg / 17.83 lbs
8086.3 g / 79.3 N
mocny
5 mm 2432 Gs
243.2 mT
4.97 kg / 10.95 lbs
4966.5 g / 48.7 N
mocny
10 mm 1257 Gs
125.7 mT
1.33 kg / 2.93 lbs
1327.0 g / 13.0 N
słaby uchwyt
15 mm 671 Gs
67.1 mT
0.38 kg / 0.83 lbs
378.5 g / 3.7 N
słaby uchwyt
20 mm 386 Gs
38.6 mT
0.13 kg / 0.28 lbs
125.0 g / 1.2 N
słaby uchwyt
30 mm 156 Gs
15.6 mT
0.02 kg / 0.04 lbs
20.4 g / 0.2 N
słaby uchwyt
50 mm 43 Gs
4.3 mT
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
słaby uchwyt

Tabela 2: Równoległa siła zsuwania (pion)
MW 21.9x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 2.93 kg / 6.46 lbs
2930.0 g / 28.7 N
1 mm Stal (~0.2) 2.46 kg / 5.43 lbs
2462.0 g / 24.2 N
2 mm Stal (~0.2) 2.02 kg / 4.44 lbs
2016.0 g / 19.8 N
3 mm Stal (~0.2) 1.62 kg / 3.57 lbs
1618.0 g / 15.9 N
5 mm Stal (~0.2) 0.99 kg / 2.19 lbs
994.0 g / 9.8 N
10 mm Stal (~0.2) 0.27 kg / 0.59 lbs
266.0 g / 2.6 N
15 mm Stal (~0.2) 0.08 kg / 0.17 lbs
76.0 g / 0.7 N
20 mm Stal (~0.2) 0.03 kg / 0.06 lbs
26.0 g / 0.3 N
30 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 21.9x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
4.40 kg / 9.69 lbs
4395.0 g / 43.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
2.93 kg / 6.46 lbs
2930.0 g / 28.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
1.47 kg / 3.23 lbs
1465.0 g / 14.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
7.33 kg / 16.15 lbs
7325.0 g / 71.9 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 21.9x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
0.73 kg / 1.61 lbs
732.5 g / 7.2 N
1 mm
13%
1.83 kg / 4.04 lbs
1831.3 g / 18.0 N
2 mm
25%
3.66 kg / 8.07 lbs
3662.5 g / 35.9 N
3 mm
38%
5.49 kg / 12.11 lbs
5493.8 g / 53.9 N
5 mm
63%
9.16 kg / 20.19 lbs
9156.3 g / 89.8 N
10 mm
100%
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
11 mm
100%
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
12 mm
100%
14.65 kg / 32.30 lbs
14650.0 g / 143.7 N

Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 21.9x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 14.65 kg / 32.30 lbs
14650.0 g / 143.7 N
OK
40 °C -2.2% 14.33 kg / 31.59 lbs
14327.7 g / 140.6 N
OK
60 °C -4.4% 14.01 kg / 30.88 lbs
14005.4 g / 137.4 N
80 °C -6.6% 13.68 kg / 30.17 lbs
13683.1 g / 134.2 N
100 °C -28.8% 10.43 kg / 23.00 lbs
10430.8 g / 102.3 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 21.9x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 40.53 kg / 89.35 lbs
5 433 Gs
6.08 kg / 13.40 lbs
6079 g / 59.6 N
N/A
1 mm 37.31 kg / 82.26 lbs
8 017 Gs
5.60 kg / 12.34 lbs
5597 g / 54.9 N
33.58 kg / 74.03 lbs
~0 Gs
2 mm 34.07 kg / 75.11 lbs
7 660 Gs
5.11 kg / 11.27 lbs
5110 g / 50.1 N
30.66 kg / 67.60 lbs
~0 Gs
3 mm 30.92 kg / 68.16 lbs
7 297 Gs
4.64 kg / 10.22 lbs
4637 g / 45.5 N
27.82 kg / 61.34 lbs
~0 Gs
5 mm 25.04 kg / 55.20 lbs
6 567 Gs
3.76 kg / 8.28 lbs
3756 g / 36.8 N
22.54 kg / 49.68 lbs
~0 Gs
10 mm 13.74 kg / 30.29 lbs
4 865 Gs
2.06 kg / 4.54 lbs
2061 g / 20.2 N
12.37 kg / 27.26 lbs
~0 Gs
20 mm 3.67 kg / 8.09 lbs
2 515 Gs
0.55 kg / 1.21 lbs
551 g / 5.4 N
3.30 kg / 7.28 lbs
~0 Gs
50 mm 0.13 kg / 0.29 lbs
476 Gs
0.02 kg / 0.04 lbs
20 g / 0.2 N
0.12 kg / 0.26 lbs
~0 Gs
60 mm 0.06 kg / 0.12 lbs
312 Gs
0.01 kg / 0.02 lbs
8 g / 0.1 N
0.05 kg / 0.11 lbs
~0 Gs
70 mm 0.03 kg / 0.06 lbs
214 Gs
0.00 kg / 0.01 lbs
4 g / 0.0 N
0.02 kg / 0.05 lbs
~0 Gs
80 mm 0.01 kg / 0.03 lbs
153 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.03 lbs
~0 Gs
90 mm 0.01 kg / 0.02 lbs
113 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.01 lbs
86 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 21.9x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 11.0 cm
Implant słuchowy 10 Gs (1.0 mT) 9.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 7.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 5.5 cm
Immobilizer 50 Gs (5.0 mT) 5.0 cm
Karta płatnicza 400 Gs (40.0 mT) 2.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.0 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 21.9x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 24.23 km/h
(6.73 m/s)
0.64 J
30 mm 39.81 km/h
(11.06 m/s)
1.73 J
50 mm 51.36 km/h
(14.27 m/s)
2.87 J
100 mm 72.63 km/h
(20.17 m/s)
5.75 J

Tabela 9: Odporność na korozję
MW 21.9x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MW 21.9x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 16 059 Mx 160.6 µWb
Współczynnik Pc 0.55 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 21.9x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 14.65 kg Standard
Woda (dno rzeki) 16.77 kg
(+2.12 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Siła zsuwająca

*Ważne: Na pionowej ścianie magnes zachowa zaledwie ułamek nominalnego udźwigu.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.

3. Spadek mocy w temperaturze

*Dla standardowych magnesów maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010045-2025
Kalkulator miar
Siła (udźwig)

Pole magnetyczne

Inne propozycje

Oferowany produkt to niezwykle mocny magnes walcowy, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø21.9x10 mm gwarantuje optymalną moc. Komponent MW 21.9x10 / N38 cechuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako walec magnetyczny o dużej sile (ok. 14.65 kg), produkt ten jest dostępny natychmiast z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Dodatkowo, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych czujników oraz wydajnych filtrów, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 143.71 N przy wadze zaledwie 28.25 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na kruchość materiału NdFeB, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego precyzyjnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się żywice anaerobowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do większości zastosowań w automatyce i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø21.9x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø21.9x10 mm, co przy wadze 28.25 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 143.71 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 28.25 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 21.9 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Zalety oraz wady magnesów neodymowych Nd2Fe14B.

Mocne strony

Magnesy neodymowe to nie tylko moc przyciągania, ale także inne kluczowe właściwości, takie jak::
  • Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
  • Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
  • Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
  • Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
  • Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.

Minusy

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
  • Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
  • Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.

Parametry udźwigu

Maksymalna moc trzymania magnesuod czego zależy?

Deklarowana siła magnesu reprezentuje wartości maksymalnej, którą uzyskano w idealnych warunkach testowych, a mianowicie:
  • przy kontakcie z blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
  • której wymiar poprzeczny sięga przynajmniej 10 mm
  • charakteryzującej się gładkością
  • bez żadnej szczeliny pomiędzy magnesem a stalą
  • podczas odrywania w kierunku pionowym do płaszczyzny mocowania
  • przy temperaturze pokojowej

Co wpływa na udźwig w praktyce

Na efektywny udźwig oddziałują konkretne warunki, takie jak (od priorytetowych):
  • Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
  • Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
  • Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
  • Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal osłabiają chwyt.
  • Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).

Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.

Zasady bezpieczeństwa pracy z magnesami neodymowymi
Bezpieczna praca

Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.

Trzymaj z dala od elektroniki

Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.

Maksymalna temperatura

Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.

Niszczenie danych

Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.

Zagrożenie wybuchem pyłu

Proszek generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.

Podatność na pękanie

Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.

Nie dawać dzieciom

Neodymowe magnesy to nie zabawki. Przypadkowe zjedzenie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.

Ryzyko uczulenia

Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.

Rozruszniki serca

Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.

Uszkodzenia ciała

Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.

Ostrzeżenie! Dowiedz się więcej o zagrożeniach w artykule: BHP magnesów neodymowych.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98