MW 16x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010034
GTIN/EAN: 5906301810339
Średnica Ø
16 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
6.03 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.43 kg / 43.46 N
Indukcja magnetyczna
277.14 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
3.39 ZŁ z VAT / szt. + cena za transport
2.76 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie daj znać za pomocą
nasz formularz online
przez naszą stronę.
Siłę i formę elementów magnetycznych skontrolujesz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 16x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010034 |
| GTIN/EAN | 5906301810339 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 6.03 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.43 kg / 43.46 N |
| Indukcja magnetyczna ~ ? | 277.14 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Niniejsze dane są rezultat analizy matematycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 16x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
mocny |
| 1 mm |
2517 Gs
251.7 mT
|
3.66 kg / 8.06 lbs
3656.3 g / 35.9 N
|
mocny |
| 2 mm |
2216 Gs
221.6 mT
|
2.83 kg / 6.25 lbs
2834.9 g / 27.8 N
|
mocny |
| 3 mm |
1906 Gs
190.6 mT
|
2.10 kg / 4.62 lbs
2096.1 g / 20.6 N
|
mocny |
| 5 mm |
1348 Gs
134.8 mT
|
1.05 kg / 2.31 lbs
1048.6 g / 10.3 N
|
bezpieczny |
| 10 mm |
542 Gs
54.2 mT
|
0.17 kg / 0.37 lbs
169.4 g / 1.7 N
|
bezpieczny |
| 15 mm |
244 Gs
24.4 mT
|
0.03 kg / 0.08 lbs
34.2 g / 0.3 N
|
bezpieczny |
| 20 mm |
125 Gs
12.5 mT
|
0.01 kg / 0.02 lbs
9.1 g / 0.1 N
|
bezpieczny |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 16x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 1 mm | Stal (~0.2) |
0.73 kg / 1.61 lbs
732.0 g / 7.2 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
566.0 g / 5.6 N
|
| 3 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 16x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.33 kg / 2.93 lbs
1329.0 g / 13.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.44 kg / 0.98 lbs
443.0 g / 4.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 16x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.44 kg / 0.98 lbs
443.0 g / 4.3 N
|
| 1 mm |
|
1.11 kg / 2.44 lbs
1107.5 g / 10.9 N
|
| 2 mm |
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
| 3 mm |
|
3.32 kg / 7.32 lbs
3322.5 g / 32.6 N
|
| 5 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 10 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 11 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 12 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 16x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
OK |
| 40 °C | -2.2% |
4.33 kg / 9.55 lbs
4332.5 g / 42.5 N
|
OK |
| 60 °C | -4.4% |
4.24 kg / 9.34 lbs
4235.1 g / 41.5 N
|
|
| 80 °C | -6.6% |
4.14 kg / 9.12 lbs
4137.6 g / 40.6 N
|
|
| 100 °C | -28.8% |
3.15 kg / 6.95 lbs
3154.2 g / 30.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 16x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.51 kg / 20.98 lbs
4 379 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
N/A |
| 1 mm |
8.72 kg / 19.23 lbs
5 306 Gs
|
1.31 kg / 2.88 lbs
1309 g / 12.8 N
|
7.85 kg / 17.31 lbs
~0 Gs
|
| 2 mm |
7.85 kg / 17.31 lbs
5 034 Gs
|
1.18 kg / 2.60 lbs
1178 g / 11.6 N
|
7.07 kg / 15.58 lbs
~0 Gs
|
| 3 mm |
6.96 kg / 15.35 lbs
4 740 Gs
|
1.04 kg / 2.30 lbs
1044 g / 10.2 N
|
6.27 kg / 13.81 lbs
~0 Gs
|
| 5 mm |
5.26 kg / 11.60 lbs
4 121 Gs
|
0.79 kg / 1.74 lbs
789 g / 7.7 N
|
4.74 kg / 10.44 lbs
~0 Gs
|
| 10 mm |
2.25 kg / 4.97 lbs
2 696 Gs
|
0.34 kg / 0.74 lbs
338 g / 3.3 N
|
2.03 kg / 4.47 lbs
~0 Gs
|
| 20 mm |
0.36 kg / 0.80 lbs
1 083 Gs
|
0.05 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.72 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
143 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
89 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 16x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 16x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.98 km/h
(7.77 m/s)
|
0.18 J | |
| 30 mm |
47.35 km/h
(13.15 m/s)
|
0.52 J | |
| 50 mm |
61.12 km/h
(16.98 m/s)
|
0.87 J | |
| 100 mm |
86.44 km/h
(24.01 m/s)
|
1.74 J |
Tabela 9: Parametry powłoki (trwałość)
MW 16x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 16x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 192 Mx | 61.9 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 16x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.43 kg | Standard |
| Woda (dno rzeki) |
5.07 kg
(+0.64 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i sprzętu medycznego.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią idealnie równą
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Masywność podłoża – za chuda stal nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Zakaz zabawy
Silne magnesy to nie zabawki. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Ochrona dłoni
Silne magnesy mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Siła neodymu
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Przegrzanie magnesu
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Niklowa powłoka a alergia
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Zagrożenie dla nawigacji
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
