MW 16x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010033
GTIN/EAN: 5906301810322
Średnica Ø
16 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.97 kg / 29.11 N
Indukcja magnetyczna
217.61 mT / 2176 Gs
Powłoka
[NiCuNi] nikiel
1.734 ZŁ z VAT / szt. + cena za transport
1.410 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie napisz za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Moc a także formę elementów magnetycznych sprawdzisz w naszym
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry produktu - MW 16x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010033 |
| GTIN/EAN | 5906301810322 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.97 kg / 29.11 N |
| Indukcja magnetyczna ~ ? | 217.61 mT / 2176 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione informacje stanowią wynik symulacji matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 16x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2176 Gs
217.6 mT
|
2.97 kg / 6.55 lbs
2970.0 g / 29.1 N
|
uwaga |
| 1 mm |
2004 Gs
200.4 mT
|
2.52 kg / 5.55 lbs
2519.3 g / 24.7 N
|
uwaga |
| 2 mm |
1782 Gs
178.2 mT
|
1.99 kg / 4.39 lbs
1993.2 g / 19.6 N
|
niskie ryzyko |
| 3 mm |
1543 Gs
154.3 mT
|
1.49 kg / 3.29 lbs
1494.0 g / 14.7 N
|
niskie ryzyko |
| 5 mm |
1098 Gs
109.8 mT
|
0.76 kg / 1.67 lbs
756.6 g / 7.4 N
|
niskie ryzyko |
| 10 mm |
439 Gs
43.9 mT
|
0.12 kg / 0.27 lbs
120.9 g / 1.2 N
|
niskie ryzyko |
| 15 mm |
195 Gs
19.5 mT
|
0.02 kg / 0.05 lbs
23.9 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
99 Gs
9.9 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 16x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.59 kg / 1.31 lbs
594.0 g / 5.8 N
|
| 1 mm | Stal (~0.2) |
0.50 kg / 1.11 lbs
504.0 g / 4.9 N
|
| 2 mm | Stal (~0.2) |
0.40 kg / 0.88 lbs
398.0 g / 3.9 N
|
| 3 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
152.0 g / 1.5 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 16x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.89 kg / 1.96 lbs
891.0 g / 8.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.59 kg / 1.31 lbs
594.0 g / 5.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.30 kg / 0.65 lbs
297.0 g / 2.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.49 kg / 3.27 lbs
1485.0 g / 14.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 16x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.30 kg / 0.65 lbs
297.0 g / 2.9 N
|
| 1 mm |
|
0.74 kg / 1.64 lbs
742.5 g / 7.3 N
|
| 2 mm |
|
1.49 kg / 3.27 lbs
1485.0 g / 14.6 N
|
| 3 mm |
|
2.23 kg / 4.91 lbs
2227.5 g / 21.9 N
|
| 5 mm |
|
2.97 kg / 6.55 lbs
2970.0 g / 29.1 N
|
| 10 mm |
|
2.97 kg / 6.55 lbs
2970.0 g / 29.1 N
|
| 11 mm |
|
2.97 kg / 6.55 lbs
2970.0 g / 29.1 N
|
| 12 mm |
|
2.97 kg / 6.55 lbs
2970.0 g / 29.1 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 16x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.97 kg / 6.55 lbs
2970.0 g / 29.1 N
|
OK |
| 40 °C | -2.2% |
2.90 kg / 6.40 lbs
2904.7 g / 28.5 N
|
OK |
| 60 °C | -4.4% |
2.84 kg / 6.26 lbs
2839.3 g / 27.9 N
|
|
| 80 °C | -6.6% |
2.77 kg / 6.12 lbs
2774.0 g / 27.2 N
|
|
| 100 °C | -28.8% |
2.11 kg / 4.66 lbs
2114.6 g / 20.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 16x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.87 kg / 12.93 lbs
3 716 Gs
|
0.88 kg / 1.94 lbs
880 g / 8.6 N
|
N/A |
| 1 mm |
5.46 kg / 12.03 lbs
4 197 Gs
|
0.82 kg / 1.80 lbs
819 g / 8.0 N
|
4.91 kg / 10.83 lbs
~0 Gs
|
| 2 mm |
4.98 kg / 10.97 lbs
4 007 Gs
|
0.75 kg / 1.65 lbs
746 g / 7.3 N
|
4.48 kg / 9.87 lbs
~0 Gs
|
| 3 mm |
4.46 kg / 9.83 lbs
3 794 Gs
|
0.67 kg / 1.48 lbs
669 g / 6.6 N
|
4.01 kg / 8.85 lbs
~0 Gs
|
| 5 mm |
3.43 kg / 7.56 lbs
3 326 Gs
|
0.51 kg / 1.13 lbs
514 g / 5.0 N
|
3.09 kg / 6.80 lbs
~0 Gs
|
| 10 mm |
1.49 kg / 3.30 lbs
2 196 Gs
|
0.22 kg / 0.49 lbs
224 g / 2.2 N
|
1.35 kg / 2.97 lbs
~0 Gs
|
| 20 mm |
0.24 kg / 0.53 lbs
878 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.21 kg / 0.47 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
113 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
70 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 16x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 16x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.50 km/h
(7.36 m/s)
|
0.12 J | |
| 30 mm |
44.78 km/h
(12.44 m/s)
|
0.35 J | |
| 50 mm |
57.81 km/h
(16.06 m/s)
|
0.58 J | |
| 100 mm |
81.75 km/h
(22.71 m/s)
|
1.17 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 16x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 16x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 141 Mx | 51.4 µWb |
| Współczynnik Pc | 0.27 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 16x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.97 kg | Standard |
| Woda (dno rzeki) |
3.40 kg
(+0.43 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.27
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Minusy
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem podłoża ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda blacha powoduje nasycenie magnetyczne, przez co część strumienia ucieka w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Niklowa powłoka a alergia
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Pole magnetyczne a elektronika
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne zakłóca działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Ryzyko złamań
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Pył jest łatwopalny
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Wrażliwość na ciepło
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Nie dawać dzieciom
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Potężne pole
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
