MW 14.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010023
GTIN/EAN: 5906301810223
Średnica Ø
14.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
13.08 g
Kierunek magnesowania
→ diametralny
Udźwig
7.60 kg / 74.57 N
Indukcja magnetyczna
496.78 mT / 4968 Gs
Powłoka
[NiCuNi] nikiel
8.24 ZŁ z VAT / szt. + cena za transport
6.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub skontaktuj się poprzez
formularz zapytania
przez naszą stronę.
Siłę oraz kształt magnesów zobaczysz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry produktu - MW 14.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010023 |
| GTIN/EAN | 5906301810223 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 13.08 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 7.60 kg / 74.57 N |
| Indukcja magnetyczna ~ ? | 496.78 mT / 4968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Poniższe wartości stanowią bezpośredni efekt symulacji fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 14.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4965 Gs
496.5 mT
|
7.60 kg / 16.76 lbs
7600.0 g / 74.6 N
|
średnie ryzyko |
| 1 mm |
4309 Gs
430.9 mT
|
5.72 kg / 12.62 lbs
5722.6 g / 56.1 N
|
średnie ryzyko |
| 2 mm |
3660 Gs
366.0 mT
|
4.13 kg / 9.10 lbs
4129.1 g / 40.5 N
|
średnie ryzyko |
| 3 mm |
3063 Gs
306.3 mT
|
2.89 kg / 6.38 lbs
2892.7 g / 28.4 N
|
średnie ryzyko |
| 5 mm |
2098 Gs
209.8 mT
|
1.36 kg / 2.99 lbs
1356.5 g / 13.3 N
|
bezpieczny |
| 10 mm |
838 Gs
83.8 mT
|
0.22 kg / 0.48 lbs
216.5 g / 2.1 N
|
bezpieczny |
| 15 mm |
389 Gs
38.9 mT
|
0.05 kg / 0.10 lbs
46.6 g / 0.5 N
|
bezpieczny |
| 20 mm |
207 Gs
20.7 mT
|
0.01 kg / 0.03 lbs
13.2 g / 0.1 N
|
bezpieczny |
| 30 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
bezpieczny |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 14.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.52 kg / 3.35 lbs
1520.0 g / 14.9 N
|
| 1 mm | Stal (~0.2) |
1.14 kg / 2.52 lbs
1144.0 g / 11.2 N
|
| 2 mm | Stal (~0.2) |
0.83 kg / 1.82 lbs
826.0 g / 8.1 N
|
| 3 mm | Stal (~0.2) |
0.58 kg / 1.27 lbs
578.0 g / 5.7 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
272.0 g / 2.7 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 14.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.28 kg / 5.03 lbs
2280.0 g / 22.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.52 kg / 3.35 lbs
1520.0 g / 14.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.76 kg / 1.68 lbs
760.0 g / 7.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.80 kg / 8.38 lbs
3800.0 g / 37.3 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 14.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.76 kg / 1.68 lbs
760.0 g / 7.5 N
|
| 1 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 2 mm |
|
3.80 kg / 8.38 lbs
3800.0 g / 37.3 N
|
| 3 mm |
|
5.70 kg / 12.57 lbs
5700.0 g / 55.9 N
|
| 5 mm |
|
7.60 kg / 16.76 lbs
7600.0 g / 74.6 N
|
| 10 mm |
|
7.60 kg / 16.76 lbs
7600.0 g / 74.6 N
|
| 11 mm |
|
7.60 kg / 16.76 lbs
7600.0 g / 74.6 N
|
| 12 mm |
|
7.60 kg / 16.76 lbs
7600.0 g / 74.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 14.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.60 kg / 16.76 lbs
7600.0 g / 74.6 N
|
OK |
| 40 °C | -2.2% |
7.43 kg / 16.39 lbs
7432.8 g / 72.9 N
|
OK |
| 60 °C | -4.4% |
7.27 kg / 16.02 lbs
7265.6 g / 71.3 N
|
OK |
| 80 °C | -6.6% |
7.10 kg / 15.65 lbs
7098.4 g / 69.6 N
|
|
| 100 °C | -28.8% |
5.41 kg / 11.93 lbs
5411.2 g / 53.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 14.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.50 kg / 58.43 lbs
5 802 Gs
|
3.98 kg / 8.76 lbs
3975 g / 39.0 N
|
N/A |
| 1 mm |
23.16 kg / 51.05 lbs
9 283 Gs
|
3.47 kg / 7.66 lbs
3474 g / 34.1 N
|
20.84 kg / 45.95 lbs
~0 Gs
|
| 2 mm |
19.96 kg / 44.00 lbs
8 617 Gs
|
2.99 kg / 6.60 lbs
2993 g / 29.4 N
|
17.96 kg / 39.60 lbs
~0 Gs
|
| 3 mm |
17.03 kg / 37.54 lbs
7 959 Gs
|
2.55 kg / 5.63 lbs
2554 g / 25.1 N
|
15.32 kg / 33.78 lbs
~0 Gs
|
| 5 mm |
12.09 kg / 26.65 lbs
6 707 Gs
|
1.81 kg / 4.00 lbs
1813 g / 17.8 N
|
10.88 kg / 23.99 lbs
~0 Gs
|
| 10 mm |
4.73 kg / 10.43 lbs
4 196 Gs
|
0.71 kg / 1.56 lbs
710 g / 7.0 N
|
4.26 kg / 9.39 lbs
~0 Gs
|
| 20 mm |
0.76 kg / 1.66 lbs
1 676 Gs
|
0.11 kg / 0.25 lbs
113 g / 1.1 N
|
0.68 kg / 1.50 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
245 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
156 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
105 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 14.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 14.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.74 km/h
(6.87 m/s)
|
0.31 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.89 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.49 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.98 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 14.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 14.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 732 Mx | 87.3 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 14.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.60 kg | Standard |
| Woda (dno rzeki) |
8.70 kg
(+1.10 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- z użyciem płyty ze miękkiej stali, działającej jako element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia jest tracona w powietrzu.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Interferencja medyczna
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Niklowa powłoka a alergia
Część populacji posiada uczulenie na nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Sugerujemy używanie rękawic bezlateksowych.
Uwaga: zadławienie
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Urazy ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Potężne pole
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Przegrzanie magnesu
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
