MW 10x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010004
GTIN: 5906301810032
Średnica Ø
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
5.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.18 kg / 31.15 N
Indukcja magnetyczna
553.84 mT / 5538 Gs
Powłoka
[NiCuNi] nikiel
4.31 ZŁ z VAT / szt. + cena za transport
3.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Dzwoń do nas
+48 22 499 98 98
lub pisz korzystając z
nasz formularz online
na stronie kontaktowej.
Siłę oraz kształt magnesu neodymowego wyliczysz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 10x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010004 |
| GTIN | 5906301810032 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 5.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.18 kg / 31.15 N |
| Indukcja magnetyczna ~ ? | 553.84 mT / 5538 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Niniejsze wartości są rezultat kalkulacji fizycznej. Wyniki bazują na modelach dla klasy NdFeB. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
MW 10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5534 Gs
553.4 mT
|
3.18 kg / 3180.0 g
31.2 N
|
mocny |
| 1 mm |
4428 Gs
442.8 mT
|
2.04 kg / 2036.1 g
20.0 N
|
mocny |
| 2 mm |
3420 Gs
342.0 mT
|
1.21 kg / 1214.8 g
11.9 N
|
niskie ryzyko |
| 3 mm |
2597 Gs
259.7 mT
|
0.70 kg / 700.2 g
6.9 N
|
niskie ryzyko |
| 5 mm |
1498 Gs
149.8 mT
|
0.23 kg / 232.9 g
2.3 N
|
niskie ryzyko |
| 10 mm |
469 Gs
46.9 mT
|
0.02 kg / 22.9 g
0.2 N
|
niskie ryzyko |
| 15 mm |
198 Gs
19.8 mT
|
0.00 kg / 4.1 g
0.0 N
|
niskie ryzyko |
| 20 mm |
101 Gs
10.1 mT
|
0.00 kg / 1.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MW 10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 636.0 g
6.2 N
|
| 1 mm | Stal (~0.2) |
0.41 kg / 408.0 g
4.0 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 242.0 g
2.4 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.95 kg / 954.0 g
9.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 636.0 g
6.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 318.0 g
3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.59 kg / 1590.0 g
15.6 N
|
MW 10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 318.0 g
3.1 N
|
| 1 mm |
|
0.80 kg / 795.0 g
7.8 N
|
| 2 mm |
|
1.59 kg / 1590.0 g
15.6 N
|
| 5 mm |
|
3.18 kg / 3180.0 g
31.2 N
|
| 10 mm |
|
3.18 kg / 3180.0 g
31.2 N
|
MW 10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.18 kg / 3180.0 g
31.2 N
|
OK |
| 40 °C | -2.2% |
3.11 kg / 3110.0 g
30.5 N
|
OK |
| 60 °C | -4.4% |
3.04 kg / 3040.1 g
29.8 N
|
OK |
| 80 °C | -6.6% |
2.97 kg / 2970.1 g
29.1 N
|
|
| 100 °C | -28.8% |
2.26 kg / 2264.2 g
22.2 N
|
MW 10x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
14.83 kg / 14830 g
145.5 N
6 003 Gs
|
N/A |
| 1 mm |
12.01 kg / 12012 g
117.8 N
9 962 Gs
|
10.81 kg / 10811 g
106.1 N
~0 Gs
|
| 2 mm |
9.50 kg / 9495 g
93.1 N
8 857 Gs
|
8.55 kg / 8546 g
83.8 N
~0 Gs
|
| 3 mm |
7.38 kg / 7381 g
72.4 N
7 809 Gs
|
6.64 kg / 6643 g
65.2 N
~0 Gs
|
| 5 mm |
4.31 kg / 4311 g
42.3 N
5 968 Gs
|
3.88 kg / 3880 g
38.1 N
~0 Gs
|
| 10 mm |
1.09 kg / 1086 g
10.7 N
2 996 Gs
|
0.98 kg / 978 g
9.6 N
~0 Gs
|
| 20 mm |
0.11 kg / 107 g
1.0 N
939 Gs
|
0.10 kg / 96 g
0.9 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
116 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.54 km/h
(6.54 m/s)
|
0.13 J | |
| 30 mm |
40.59 km/h
(11.27 m/s)
|
0.37 J | |
| 50 mm |
52.40 km/h
(14.56 m/s)
|
0.62 J | |
| 100 mm |
74.10 km/h
(20.58 m/s)
|
1.25 J |
MW 10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 481 Mx | 44.8 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
MW 10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.18 kg | Standard |
| Woda (dno rzeki) |
3.64 kg
(+0.46 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
Inne oferty
Zalety oraz wady magnesów z neodymu NdFeB.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność ciała obcego (rdza, brud, powietrze) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Karty i dyski
Ekstremalne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Uszkodzenia ciała
Silne magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Zagrożenie zapłonem
Proszek powstający podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Dla uczulonych
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Ogromna siła
Stosuj magnesy świadomie. Ich ogromna siła może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Zagrożenie dla najmłodszych
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Ryzyko rozmagnesowania
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Ryzyko pęknięcia
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Zagrożenie życia
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Smartfony i tablety
Silne pole magnetyczne zakłóca funkcjonowanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
