MW 10x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010004
GTIN/EAN: 5906301810032
Średnica Ø
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
5.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.18 kg / 31.15 N
Indukcja magnetyczna
553.84 mT / 5538 Gs
Powłoka
[NiCuNi] nikiel
4.31 ZŁ z VAT / szt. + cena za transport
3.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie napisz przez
formularz kontaktowy
przez naszą stronę.
Właściwości a także formę elementów magnetycznych zobaczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MW 10x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010004 |
| GTIN/EAN | 5906301810032 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 5.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.18 kg / 31.15 N |
| Indukcja magnetyczna ~ ? | 553.84 mT / 5538 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Przedstawione dane stanowią wynik kalkulacji matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5534 Gs
553.4 mT
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
mocny |
| 1 mm |
4428 Gs
442.8 mT
|
2.04 kg / 4.49 lbs
2036.1 g / 20.0 N
|
mocny |
| 2 mm |
3420 Gs
342.0 mT
|
1.21 kg / 2.68 lbs
1214.8 g / 11.9 N
|
bezpieczny |
| 3 mm |
2597 Gs
259.7 mT
|
0.70 kg / 1.54 lbs
700.2 g / 6.9 N
|
bezpieczny |
| 5 mm |
1498 Gs
149.8 mT
|
0.23 kg / 0.51 lbs
232.9 g / 2.3 N
|
bezpieczny |
| 10 mm |
469 Gs
46.9 mT
|
0.02 kg / 0.05 lbs
22.9 g / 0.2 N
|
bezpieczny |
| 15 mm |
198 Gs
19.8 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
bezpieczny |
| 20 mm |
101 Gs
10.1 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
bezpieczny |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
|
| 1 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
408.0 g / 4.0 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
242.0 g / 2.4 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.95 kg / 2.10 lbs
954.0 g / 9.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
|
| 1 mm |
|
0.80 kg / 1.75 lbs
795.0 g / 7.8 N
|
| 2 mm |
|
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N
|
| 3 mm |
|
2.39 kg / 5.26 lbs
2385.0 g / 23.4 N
|
| 5 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
| 10 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
| 11 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
| 12 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
OK |
| 40 °C | -2.2% |
3.11 kg / 6.86 lbs
3110.0 g / 30.5 N
|
OK |
| 60 °C | -4.4% |
3.04 kg / 6.70 lbs
3040.1 g / 29.8 N
|
OK |
| 80 °C | -6.6% |
2.97 kg / 6.55 lbs
2970.1 g / 29.1 N
|
|
| 100 °C | -28.8% |
2.26 kg / 4.99 lbs
2264.2 g / 22.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 10x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.83 kg / 32.69 lbs
6 003 Gs
|
2.22 kg / 4.90 lbs
2224 g / 21.8 N
|
N/A |
| 1 mm |
12.01 kg / 26.48 lbs
9 962 Gs
|
1.80 kg / 3.97 lbs
1802 g / 17.7 N
|
10.81 kg / 23.83 lbs
~0 Gs
|
| 2 mm |
9.50 kg / 20.93 lbs
8 857 Gs
|
1.42 kg / 3.14 lbs
1424 g / 14.0 N
|
8.55 kg / 18.84 lbs
~0 Gs
|
| 3 mm |
7.38 kg / 16.27 lbs
7 809 Gs
|
1.11 kg / 2.44 lbs
1107 g / 10.9 N
|
6.64 kg / 14.64 lbs
~0 Gs
|
| 5 mm |
4.31 kg / 9.50 lbs
5 968 Gs
|
0.65 kg / 1.43 lbs
647 g / 6.3 N
|
3.88 kg / 8.55 lbs
~0 Gs
|
| 10 mm |
1.09 kg / 2.39 lbs
2 996 Gs
|
0.16 kg / 0.36 lbs
163 g / 1.6 N
|
0.98 kg / 2.16 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.24 lbs
939 Gs
|
0.02 kg / 0.04 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
116 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
73 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.54 km/h
(6.54 m/s)
|
0.13 J | |
| 30 mm |
40.59 km/h
(11.27 m/s)
|
0.37 J | |
| 50 mm |
52.40 km/h
(14.56 m/s)
|
0.62 J | |
| 100 mm |
74.10 km/h
(20.58 m/s)
|
1.25 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 481 Mx | 44.8 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.18 kg | Standard |
| Woda (dno rzeki) |
3.64 kg
(+0.46 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy pionowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Karty i dyski
Nie przykładaj magnesów do dokumentów, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Wrażliwość na ciepło
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Uszkodzenia czujników
Uwaga: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Nie wierć w magnesach
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Implanty medyczne
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.
Zasady obsługi
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Reakcje alergiczne
Niektóre osoby ma uczulenie na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Wskazane jest stosowanie rękawiczek ochronnych.
Zakaz zabawy
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Podatność na pękanie
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
