MPL 6x6x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020175
GTIN/EAN: 5906301811817
Długość
6 mm [±0,1 mm]
Szerokość
6 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
1.62 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.38 kg / 13.54 N
Indukcja magnetyczna
539.50 mT / 5395 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub daj znać za pomocą
formularz zapytania
na stronie kontaktowej.
Masę i budowę magnesów neodymowych sprawdzisz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 6x6x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 6x6x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020175 |
| GTIN/EAN | 5906301811817 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 6 mm [±0,1 mm] |
| Szerokość | 6 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 1.62 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.38 kg / 13.54 N |
| Indukcja magnetyczna ~ ? | 539.50 mT / 5395 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Poniższe informacje są bezpośredni efekt kalkulacji fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
MPL 6x6x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5389 Gs
538.9 mT
|
1.38 kg / 1380.0 g
13.5 N
|
niskie ryzyko |
| 1 mm |
3805 Gs
380.5 mT
|
0.69 kg / 688.0 g
6.7 N
|
niskie ryzyko |
| 2 mm |
2530 Gs
253.0 mT
|
0.30 kg / 304.3 g
3.0 N
|
niskie ryzyko |
| 3 mm |
1671 Gs
167.1 mT
|
0.13 kg / 132.7 g
1.3 N
|
niskie ryzyko |
| 5 mm |
784 Gs
78.4 mT
|
0.03 kg / 29.2 g
0.3 N
|
niskie ryzyko |
| 10 mm |
192 Gs
19.2 mT
|
0.00 kg / 1.8 g
0.0 N
|
niskie ryzyko |
| 15 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 20 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 6x6x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 276.0 g
2.7 N
|
| 1 mm | Stal (~0.2) |
0.14 kg / 138.0 g
1.4 N
|
| 2 mm | Stal (~0.2) |
0.06 kg / 60.0 g
0.6 N
|
| 3 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 6x6x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.41 kg / 414.0 g
4.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 276.0 g
2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 138.0 g
1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.69 kg / 690.0 g
6.8 N
|
MPL 6x6x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 138.0 g
1.4 N
|
| 1 mm |
|
0.35 kg / 345.0 g
3.4 N
|
| 2 mm |
|
0.69 kg / 690.0 g
6.8 N
|
| 5 mm |
|
1.38 kg / 1380.0 g
13.5 N
|
| 10 mm |
|
1.38 kg / 1380.0 g
13.5 N
|
MPL 6x6x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.38 kg / 1380.0 g
13.5 N
|
OK |
| 40 °C | -2.2% |
1.35 kg / 1349.6 g
13.2 N
|
OK |
| 60 °C | -4.4% |
1.32 kg / 1319.3 g
12.9 N
|
OK |
| 80 °C | -6.6% |
1.29 kg / 1288.9 g
12.6 N
|
|
| 100 °C | -28.8% |
0.98 kg / 982.6 g
9.6 N
|
MPL 6x6x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.44 kg / 6445 g
63.2 N
5 949 Gs
|
N/A |
| 1 mm |
4.66 kg / 4663 g
45.7 N
9 167 Gs
|
4.20 kg / 4196 g
41.2 N
~0 Gs
|
| 2 mm |
3.21 kg / 3213 g
31.5 N
7 610 Gs
|
2.89 kg / 2892 g
28.4 N
~0 Gs
|
| 3 mm |
2.15 kg / 2152 g
21.1 N
6 228 Gs
|
1.94 kg / 1937 g
19.0 N
~0 Gs
|
| 5 mm |
0.94 kg / 936 g
9.2 N
4 107 Gs
|
0.84 kg / 842 g
8.3 N
~0 Gs
|
| 10 mm |
0.14 kg / 136 g
1.3 N
1 568 Gs
|
0.12 kg / 123 g
1.2 N
~0 Gs
|
| 20 mm |
0.01 kg / 8 g
0.1 N
384 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
39 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 6x6x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 6x6x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.46 km/h
(8.18 m/s)
|
0.05 J | |
| 30 mm |
50.98 km/h
(14.16 m/s)
|
0.16 J | |
| 50 mm |
65.82 km/h
(18.28 m/s)
|
0.27 J | |
| 100 mm |
93.08 km/h
(25.86 m/s)
|
0.54 J |
MPL 6x6x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 6x6x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 982 Mx | 19.8 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
MPL 6x6x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.38 kg | Standard |
| Woda (dno rzeki) |
1.58 kg
(+0.20 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z użyciem podłoża ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje siłę trzymania.
Ochrona dłoni
Duże magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Nie zbliżaj do komputera
Potężne oddziaływanie może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Niebezpieczeństwo dla rozruszników
Pacjenci z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Podatność na pękanie
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Chronić przed dziećmi
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Potężne pole
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
