MPL 6x6x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020175
GTIN/EAN: 5906301811817
Długość
6 mm [±0,1 mm]
Szerokość
6 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
1.62 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.38 kg / 13.54 N
Indukcja magnetyczna
539.50 mT / 5395 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość przez
formularz zapytania
na stronie kontakt.
Moc a także wygląd magnesów wyliczysz u nas w
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - MPL 6x6x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 6x6x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020175 |
| GTIN/EAN | 5906301811817 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 6 mm [±0,1 mm] |
| Szerokość | 6 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 1.62 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.38 kg / 13.54 N |
| Indukcja magnetyczna ~ ? | 539.50 mT / 5395 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Przedstawione dane są rezultat analizy inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 6x6x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5389 Gs
538.9 mT
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
słaby uchwyt |
| 1 mm |
3805 Gs
380.5 mT
|
0.69 kg / 1.52 lbs
688.0 g / 6.7 N
|
słaby uchwyt |
| 2 mm |
2530 Gs
253.0 mT
|
0.30 kg / 0.67 lbs
304.3 g / 3.0 N
|
słaby uchwyt |
| 3 mm |
1671 Gs
167.1 mT
|
0.13 kg / 0.29 lbs
132.7 g / 1.3 N
|
słaby uchwyt |
| 5 mm |
784 Gs
78.4 mT
|
0.03 kg / 0.06 lbs
29.2 g / 0.3 N
|
słaby uchwyt |
| 10 mm |
192 Gs
19.2 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 6x6x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 1 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| 2 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 3 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 6x6x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 6x6x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| 1 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 2 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 3 mm |
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| 5 mm |
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| 10 mm |
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| 11 mm |
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| 12 mm |
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 6x6x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
OK |
| 40 °C | -2.2% |
1.35 kg / 2.98 lbs
1349.6 g / 13.2 N
|
OK |
| 60 °C | -4.4% |
1.32 kg / 2.91 lbs
1319.3 g / 12.9 N
|
OK |
| 80 °C | -6.6% |
1.29 kg / 2.84 lbs
1288.9 g / 12.6 N
|
|
| 100 °C | -28.8% |
0.98 kg / 2.17 lbs
982.6 g / 9.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 6x6x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
6.44 kg / 14.21 lbs
5 949 Gs
|
0.97 kg / 2.13 lbs
967 g / 9.5 N
|
N/A |
| 1 mm |
4.66 kg / 10.28 lbs
9 167 Gs
|
0.70 kg / 1.54 lbs
699 g / 6.9 N
|
4.20 kg / 9.25 lbs
~0 Gs
|
| 2 mm |
3.21 kg / 7.08 lbs
7 610 Gs
|
0.48 kg / 1.06 lbs
482 g / 4.7 N
|
2.89 kg / 6.38 lbs
~0 Gs
|
| 3 mm |
2.15 kg / 4.74 lbs
6 228 Gs
|
0.32 kg / 0.71 lbs
323 g / 3.2 N
|
1.94 kg / 4.27 lbs
~0 Gs
|
| 5 mm |
0.94 kg / 2.06 lbs
4 107 Gs
|
0.14 kg / 0.31 lbs
140 g / 1.4 N
|
0.84 kg / 1.86 lbs
~0 Gs
|
| 10 mm |
0.14 kg / 0.30 lbs
1 568 Gs
|
0.02 kg / 0.05 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
384 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 6x6x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 6x6x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.46 km/h
(8.18 m/s)
|
0.05 J | |
| 30 mm |
50.98 km/h
(14.16 m/s)
|
0.16 J | |
| 50 mm |
65.82 km/h
(18.28 m/s)
|
0.27 J | |
| 100 mm |
93.08 km/h
(25.86 m/s)
|
0.54 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 6x6x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 6x6x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 982 Mx | 19.8 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 6x6x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.38 kg | Standard |
| Woda (dno rzeki) |
1.58 kg
(+0.20 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- której grubość to min. 10 mm
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda płyta nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Urazy ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Maksymalna temperatura
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Ryzyko uczulenia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Uwaga: zadławienie
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Uszkodzenia czujników
Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Samozapłon
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Niszczenie danych
Potężne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
