MPL 40x10x18 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020149
GTIN/EAN: 5906301811558
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
→ diametralny
Udźwig
16.72 kg / 164.01 N
Indukcja magnetyczna
540.48 mT / 5405 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo pisz poprzez
formularz zapytania
na stronie kontakt.
Siłę i kształt magnesów neodymowych skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MPL 40x10x18 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x18 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020149 |
| GTIN/EAN | 5906301811558 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 16.72 kg / 164.01 N |
| Indukcja magnetyczna ~ ? | 540.48 mT / 5405 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Przedstawione informacje stanowią bezpośredni efekt analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 40x10x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5402 Gs
540.2 mT
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
niebezpieczny! |
| 1 mm |
4664 Gs
466.4 mT
|
12.46 kg / 27.48 lbs
12464.6 g / 122.3 N
|
niebezpieczny! |
| 2 mm |
3970 Gs
397.0 mT
|
9.03 kg / 19.90 lbs
9028.7 g / 88.6 N
|
mocny |
| 3 mm |
3362 Gs
336.2 mT
|
6.48 kg / 14.28 lbs
6476.4 g / 63.5 N
|
mocny |
| 5 mm |
2432 Gs
243.2 mT
|
3.39 kg / 7.47 lbs
3388.5 g / 33.2 N
|
mocny |
| 10 mm |
1220 Gs
122.0 mT
|
0.85 kg / 1.88 lbs
853.2 g / 8.4 N
|
słaby uchwyt |
| 15 mm |
703 Gs
70.3 mT
|
0.28 kg / 0.62 lbs
282.9 g / 2.8 N
|
słaby uchwyt |
| 20 mm |
440 Gs
44.0 mT
|
0.11 kg / 0.24 lbs
111.1 g / 1.1 N
|
słaby uchwyt |
| 30 mm |
203 Gs
20.3 mT
|
0.02 kg / 0.05 lbs
23.6 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 40x10x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.34 kg / 7.37 lbs
3344.0 g / 32.8 N
|
| 1 mm | Stal (~0.2) |
2.49 kg / 5.49 lbs
2492.0 g / 24.4 N
|
| 2 mm | Stal (~0.2) |
1.81 kg / 3.98 lbs
1806.0 g / 17.7 N
|
| 3 mm | Stal (~0.2) |
1.30 kg / 2.86 lbs
1296.0 g / 12.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
678.0 g / 6.7 N
|
| 10 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 15 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 40x10x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.02 kg / 11.06 lbs
5016.0 g / 49.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.34 kg / 7.37 lbs
3344.0 g / 32.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.67 kg / 3.69 lbs
1672.0 g / 16.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.36 kg / 18.43 lbs
8360.0 g / 82.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 40x10x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 1.84 lbs
836.0 g / 8.2 N
|
| 1 mm |
|
2.09 kg / 4.61 lbs
2090.0 g / 20.5 N
|
| 2 mm |
|
4.18 kg / 9.22 lbs
4180.0 g / 41.0 N
|
| 3 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 5 mm |
|
10.45 kg / 23.04 lbs
10450.0 g / 102.5 N
|
| 10 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
| 11 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
| 12 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 40x10x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
OK |
| 40 °C | -2.2% |
16.35 kg / 36.05 lbs
16352.2 g / 160.4 N
|
OK |
| 60 °C | -4.4% |
15.98 kg / 35.24 lbs
15984.3 g / 156.8 N
|
OK |
| 80 °C | -6.6% |
15.62 kg / 34.43 lbs
15616.5 g / 153.2 N
|
|
| 100 °C | -28.8% |
11.90 kg / 26.25 lbs
11904.6 g / 116.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 40x10x18 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.96 kg / 158.65 lbs
5 928 Gs
|
10.79 kg / 23.80 lbs
10794 g / 105.9 N
|
N/A |
| 1 mm |
62.49 kg / 137.76 lbs
10 068 Gs
|
9.37 kg / 20.66 lbs
9373 g / 91.9 N
|
56.24 kg / 123.98 lbs
~0 Gs
|
| 2 mm |
53.65 kg / 118.27 lbs
9 328 Gs
|
8.05 kg / 17.74 lbs
8047 g / 78.9 N
|
48.28 kg / 106.44 lbs
~0 Gs
|
| 3 mm |
45.76 kg / 100.88 lbs
8 615 Gs
|
6.86 kg / 15.13 lbs
6864 g / 67.3 N
|
41.18 kg / 90.79 lbs
~0 Gs
|
| 5 mm |
32.92 kg / 72.58 lbs
7 308 Gs
|
4.94 kg / 10.89 lbs
4938 g / 48.4 N
|
29.63 kg / 65.32 lbs
~0 Gs
|
| 10 mm |
14.58 kg / 32.15 lbs
4 864 Gs
|
2.19 kg / 4.82 lbs
2188 g / 21.5 N
|
13.13 kg / 28.94 lbs
~0 Gs
|
| 20 mm |
3.67 kg / 8.10 lbs
2 441 Gs
|
0.55 kg / 1.21 lbs
551 g / 5.4 N
|
3.30 kg / 7.29 lbs
~0 Gs
|
| 50 mm |
0.21 kg / 0.46 lbs
585 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 60 mm |
0.10 kg / 0.22 lbs
406 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.06 lbs
217 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
165 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
128 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 40x10x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 40x10x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.30 km/h
(5.08 m/s)
|
0.70 J | |
| 30 mm |
30.76 km/h
(8.55 m/s)
|
1.97 J | |
| 50 mm |
39.69 km/h
(11.02 m/s)
|
3.28 J | |
| 100 mm |
56.12 km/h
(15.59 m/s)
|
6.56 J |
Tabela 9: Odporność na korozję
MPL 40x10x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x10x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 285 Mx | 212.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x10x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.72 kg | Standard |
| Woda (dno rzeki) |
19.14 kg
(+2.42 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) mają estetyczny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- o grubości przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Urządzenia elektroniczne
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Ryzyko złamań
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Niklowa powłoka a alergia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Ostrzeżenie dla sercowców
Osoby z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować pracę implantu.
Trzymaj z dala od elektroniki
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
