MPL 20x8x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020134
GTIN/EAN: 5906301811404
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
7.2 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.27 kg / 61.50 N
Indukcja magnetyczna
423.90 mT / 4239 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie daj znać za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Moc oraz kształt elementów magnetycznych sprawdzisz u nas w
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 20x8x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020134 |
| GTIN/EAN | 5906301811404 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 7.2 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.27 kg / 61.50 N |
| Indukcja magnetyczna ~ ? | 423.90 mT / 4239 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Przedstawione dane stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4236 Gs
423.6 mT
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
mocny |
| 1 mm |
3505 Gs
350.5 mT
|
4.29 kg / 9.47 lbs
4293.5 g / 42.1 N
|
mocny |
| 2 mm |
2814 Gs
281.4 mT
|
2.77 kg / 6.10 lbs
2766.9 g / 27.1 N
|
mocny |
| 3 mm |
2235 Gs
223.5 mT
|
1.75 kg / 3.85 lbs
1745.9 g / 17.1 N
|
niskie ryzyko |
| 5 mm |
1425 Gs
142.5 mT
|
0.71 kg / 1.56 lbs
709.0 g / 7.0 N
|
niskie ryzyko |
| 10 mm |
540 Gs
54.0 mT
|
0.10 kg / 0.22 lbs
101.9 g / 1.0 N
|
niskie ryzyko |
| 15 mm |
248 Gs
24.8 mT
|
0.02 kg / 0.05 lbs
21.5 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
131 Gs
13.1 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.25 kg / 2.76 lbs
1254.0 g / 12.3 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 1.89 lbs
858.0 g / 8.4 N
|
| 2 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
554.0 g / 5.4 N
|
| 3 mm | Stal (~0.2) |
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 5 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.88 kg / 4.15 lbs
1881.0 g / 18.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.25 kg / 2.76 lbs
1254.0 g / 12.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 1.38 lbs
627.0 g / 6.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.14 kg / 6.91 lbs
3135.0 g / 30.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 1.38 lbs
627.0 g / 6.2 N
|
| 1 mm |
|
1.57 kg / 3.46 lbs
1567.5 g / 15.4 N
|
| 2 mm |
|
3.14 kg / 6.91 lbs
3135.0 g / 30.8 N
|
| 3 mm |
|
4.70 kg / 10.37 lbs
4702.5 g / 46.1 N
|
| 5 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 10 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 11 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 12 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
OK |
| 40 °C | -2.2% |
6.13 kg / 13.52 lbs
6132.1 g / 60.2 N
|
OK |
| 60 °C | -4.4% |
5.99 kg / 13.21 lbs
5994.1 g / 58.8 N
|
|
| 80 °C | -6.6% |
5.86 kg / 12.91 lbs
5856.2 g / 57.4 N
|
|
| 100 °C | -28.8% |
4.46 kg / 9.84 lbs
4464.2 g / 43.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.70 kg / 39.02 lbs
5 386 Gs
|
2.66 kg / 5.85 lbs
2655 g / 26.0 N
|
N/A |
| 1 mm |
14.82 kg / 32.66 lbs
7 751 Gs
|
2.22 kg / 4.90 lbs
2222 g / 21.8 N
|
13.33 kg / 29.40 lbs
~0 Gs
|
| 2 mm |
12.12 kg / 26.72 lbs
7 011 Gs
|
1.82 kg / 4.01 lbs
1818 g / 17.8 N
|
10.91 kg / 24.05 lbs
~0 Gs
|
| 3 mm |
9.78 kg / 21.55 lbs
6 296 Gs
|
1.47 kg / 3.23 lbs
1466 g / 14.4 N
|
8.80 kg / 19.40 lbs
~0 Gs
|
| 5 mm |
6.21 kg / 13.69 lbs
5 018 Gs
|
0.93 kg / 2.05 lbs
932 g / 9.1 N
|
5.59 kg / 12.32 lbs
~0 Gs
|
| 10 mm |
2.00 kg / 4.41 lbs
2 849 Gs
|
0.30 kg / 0.66 lbs
300 g / 2.9 N
|
1.80 kg / 3.97 lbs
~0 Gs
|
| 20 mm |
0.29 kg / 0.63 lbs
1 080 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
153 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
97 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
65 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
45 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.06 km/h
(8.35 m/s)
|
0.25 J | |
| 30 mm |
51.55 km/h
(14.32 m/s)
|
0.74 J | |
| 50 mm |
66.55 km/h
(18.49 m/s)
|
1.23 J | |
| 100 mm |
94.11 km/h
(26.14 m/s)
|
2.46 J |
Tabela 9: Odporność na korozję
MPL 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 558 Mx | 65.6 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.27 kg | Standard |
| Woda (dno rzeki) |
7.18 kg
(+0.91 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- z użyciem blachy ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Co wpływa na udźwig w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Bezpieczna praca przy magnesach neodymowych
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Karty i dyski
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem dzieci i zwierząt.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Ostrożność wymagana
Używaj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Zakaz obróbki
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Ryzyko uczulenia
Pewna grupa użytkowników ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może wywołać zaczerwienienie skóry. Wskazane jest noszenie rękawiczek ochronnych.
