MPL 20x8x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020134
GTIN/EAN: 5906301811404
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
7.2 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.27 kg / 61.50 N
Indukcja magnetyczna
423.90 mT / 4239 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo daj znać korzystając z
formularz zapytania
na stronie kontaktowej.
Masę oraz budowę magnesów skontrolujesz w naszym
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MPL 20x8x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020134 |
| GTIN/EAN | 5906301811404 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 7.2 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.27 kg / 61.50 N |
| Indukcja magnetyczna ~ ? | 423.90 mT / 4239 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Niniejsze dane są bezpośredni efekt kalkulacji inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4236 Gs
423.6 mT
|
6.27 kg / 6270.0 g
61.5 N
|
uwaga |
| 1 mm |
3505 Gs
350.5 mT
|
4.29 kg / 4293.5 g
42.1 N
|
uwaga |
| 2 mm |
2814 Gs
281.4 mT
|
2.77 kg / 2766.9 g
27.1 N
|
uwaga |
| 3 mm |
2235 Gs
223.5 mT
|
1.75 kg / 1745.9 g
17.1 N
|
niskie ryzyko |
| 5 mm |
1425 Gs
142.5 mT
|
0.71 kg / 709.0 g
7.0 N
|
niskie ryzyko |
| 10 mm |
540 Gs
54.0 mT
|
0.10 kg / 101.9 g
1.0 N
|
niskie ryzyko |
| 15 mm |
248 Gs
24.8 mT
|
0.02 kg / 21.5 g
0.2 N
|
niskie ryzyko |
| 20 mm |
131 Gs
13.1 mT
|
0.01 kg / 6.0 g
0.1 N
|
niskie ryzyko |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 0.8 g
0.0 N
|
niskie ryzyko |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.25 kg / 1254.0 g
12.3 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 858.0 g
8.4 N
|
| 2 mm | Stal (~0.2) |
0.55 kg / 554.0 g
5.4 N
|
| 3 mm | Stal (~0.2) |
0.35 kg / 350.0 g
3.4 N
|
| 5 mm | Stal (~0.2) |
0.14 kg / 142.0 g
1.4 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.88 kg / 1881.0 g
18.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.25 kg / 1254.0 g
12.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 627.0 g
6.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.14 kg / 3135.0 g
30.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 627.0 g
6.2 N
|
| 1 mm |
|
1.57 kg / 1567.5 g
15.4 N
|
| 2 mm |
|
3.14 kg / 3135.0 g
30.8 N
|
| 5 mm |
|
6.27 kg / 6270.0 g
61.5 N
|
| 10 mm |
|
6.27 kg / 6270.0 g
61.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.27 kg / 6270.0 g
61.5 N
|
OK |
| 40 °C | -2.2% |
6.13 kg / 6132.1 g
60.2 N
|
OK |
| 60 °C | -4.4% |
5.99 kg / 5994.1 g
58.8 N
|
|
| 80 °C | -6.6% |
5.86 kg / 5856.2 g
57.4 N
|
|
| 100 °C | -28.8% |
4.46 kg / 4464.2 g
43.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.70 kg / 17701 g
173.7 N
5 386 Gs
|
N/A |
| 1 mm |
14.82 kg / 14815 g
145.3 N
7 751 Gs
|
13.33 kg / 13334 g
130.8 N
~0 Gs
|
| 2 mm |
12.12 kg / 12121 g
118.9 N
7 011 Gs
|
10.91 kg / 10909 g
107.0 N
~0 Gs
|
| 3 mm |
9.78 kg / 9776 g
95.9 N
6 296 Gs
|
8.80 kg / 8799 g
86.3 N
~0 Gs
|
| 5 mm |
6.21 kg / 6210 g
60.9 N
5 018 Gs
|
5.59 kg / 5589 g
54.8 N
~0 Gs
|
| 10 mm |
2.00 kg / 2002 g
19.6 N
2 849 Gs
|
1.80 kg / 1802 g
17.7 N
~0 Gs
|
| 20 mm |
0.29 kg / 288 g
2.8 N
1 080 Gs
|
0.26 kg / 259 g
2.5 N
~0 Gs
|
| 50 mm |
0.01 kg / 6 g
0.1 N
153 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.06 km/h
(8.35 m/s)
|
0.25 J | |
| 30 mm |
51.55 km/h
(14.32 m/s)
|
0.74 J | |
| 50 mm |
66.55 km/h
(18.49 m/s)
|
1.23 J | |
| 100 mm |
94.11 km/h
(26.14 m/s)
|
2.46 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 558 Mx | 65.6 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.27 kg | Standard |
| Woda (dno rzeki) |
7.18 kg
(+0.91 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) mają estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- z zastosowaniem płyty ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- o przekroju wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (pomiędzy magnesem a metalem), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig określano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Urazy ciała
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nadwrażliwość na metale
Część populacji wykazuje nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może powodować wysypkę. Wskazane jest noszenie rękawic bezlateksowych.
Implanty kardiologiczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Uwaga: zadławienie
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Ostrożność wymagana
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Łatwopalność
Proszek generowany podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Nie przegrzewaj magnesów
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
