MPL 10x10x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020110
GTIN: 5906301811169
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.84 kg / 37.71 N
Indukcja magnetyczna
539.91 mT / 5399 Gs
Powłoka
[NiCuNi] nikiel
5.29 ZŁ z VAT / szt. + cena za transport
4.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń już teraz
+48 22 499 98 98
albo zostaw wiadomość korzystając z
formularz
na stronie kontakt.
Masę a także formę magnesów neodymowych sprawdzisz w naszym
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
MPL 10x10x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x10x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020110 |
| GTIN | 5906301811169 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.84 kg / 37.71 N |
| Indukcja magnetyczna ~ ? | 539.91 mT / 5399 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Niniejsze wartości są bezpośredni efekt symulacji fizycznej. Wyniki bazują na algorytmach dla materiału NdFeB. Realne osiągi mogą się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
MPL 10x10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5395 Gs
539.5 mT
|
3.84 kg / 3840.0 g
37.7 N
|
uwaga |
| 1 mm |
4423 Gs
442.3 mT
|
2.58 kg / 2580.1 g
25.3 N
|
uwaga |
| 2 mm |
3516 Gs
351.6 mT
|
1.63 kg / 1631.0 g
16.0 N
|
słaby uchwyt |
| 3 mm |
2751 Gs
275.1 mT
|
1.00 kg / 998.0 g
9.8 N
|
słaby uchwyt |
| 5 mm |
1671 Gs
167.1 mT
|
0.37 kg / 368.5 g
3.6 N
|
słaby uchwyt |
| 10 mm |
562 Gs
56.2 mT
|
0.04 kg / 41.7 g
0.4 N
|
słaby uchwyt |
| 15 mm |
244 Gs
24.4 mT
|
0.01 kg / 7.8 g
0.1 N
|
słaby uchwyt |
| 20 mm |
126 Gs
12.6 mT
|
0.00 kg / 2.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MPL 10x10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.77 kg / 768.0 g
7.5 N
|
| 1 mm | Stal (~0.2) |
0.52 kg / 516.0 g
5.1 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 326.0 g
3.2 N
|
| 3 mm | Stal (~0.2) |
0.20 kg / 200.0 g
2.0 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.15 kg / 1152.0 g
11.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.77 kg / 768.0 g
7.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.38 kg / 384.0 g
3.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.92 kg / 1920.0 g
18.8 N
|
MPL 10x10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.38 kg / 384.0 g
3.8 N
|
| 1 mm |
|
0.96 kg / 960.0 g
9.4 N
|
| 2 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
| 5 mm |
|
3.84 kg / 3840.0 g
37.7 N
|
| 10 mm |
|
3.84 kg / 3840.0 g
37.7 N
|
MPL 10x10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.84 kg / 3840.0 g
37.7 N
|
OK |
| 40 °C | -2.2% |
3.76 kg / 3755.5 g
36.8 N
|
OK |
| 60 °C | -4.4% |
3.67 kg / 3671.0 g
36.0 N
|
OK |
| 80 °C | -6.6% |
3.59 kg / 3586.6 g
35.2 N
|
|
| 100 °C | -28.8% |
2.73 kg / 2734.1 g
26.8 N
|
MPL 10x10x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.95 kg / 17946 g
176.1 N
5 957 Gs
|
N/A |
| 1 mm |
14.86 kg / 14865 g
145.8 N
9 821 Gs
|
13.38 kg / 13378 g
131.2 N
~0 Gs
|
| 2 mm |
12.06 kg / 12058 g
118.3 N
8 845 Gs
|
10.85 kg / 10852 g
106.5 N
~0 Gs
|
| 3 mm |
9.64 kg / 9641 g
94.6 N
7 909 Gs
|
8.68 kg / 8677 g
85.1 N
~0 Gs
|
| 5 mm |
5.98 kg / 5978 g
58.6 N
6 228 Gs
|
5.38 kg / 5380 g
52.8 N
~0 Gs
|
| 10 mm |
1.72 kg / 1722 g
16.9 N
3 343 Gs
|
1.55 kg / 1550 g
15.2 N
~0 Gs
|
| 20 mm |
0.20 kg / 195 g
1.9 N
1 125 Gs
|
0.18 kg / 176 g
1.7 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
146 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.97 km/h
(6.38 m/s)
|
0.15 J | |
| 30 mm |
39.53 km/h
(10.98 m/s)
|
0.45 J | |
| 50 mm |
51.03 km/h
(14.17 m/s)
|
0.75 J | |
| 100 mm |
72.16 km/h
(20.05 m/s)
|
1.51 J |
MPL 10x10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 504 Mx | 55.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
MPL 10x10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.84 kg | Standard |
| Woda (dno rzeki) |
4.40 kg
(+0.56 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne oferty
Wady i zalety neodymowych magnesów NdFeB.
Należy pamiętać, iż obok ekstremalnej mocy, produkty te cechują się następującymi zaletami:
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Maksymalny udźwig magnesu – od czego zależy?
Siła trzymania 3.84 kg jest wynikiem testu laboratoryjnego przeprowadzonego w warunkach wzorcowych:
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- o przekroju nie mniejszej niż 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
Podczas codziennego użytkowania, faktyczna siła trzymania wynika z szeregu czynników, uszeregowanych od kluczowych:
- Dystans (między magnesem a blachą), bowiem nawet bardzo mała przerwa (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część strumienia ucieka w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
* Udźwig mierzono stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Ostrzeżenia
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Produkt nie dla dzieci
Te produkty magnetyczne nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Siła neodymu
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Siła zgniatająca
Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Alergia na nikiel
Część populacji ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Zalecamy stosowanie rękawic bezlateksowych.
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Uwaga!
Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Czy magnesy są groźne?
