MW 5x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010089
GTIN/EAN: 5906301810889
Średnica Ø
5 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
0.59 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.84 kg / 8.26 N
Indukcja magnetyczna
524.45 mT / 5244 Gs
Powłoka
[NiCuNi] nikiel
0.369 ZŁ z VAT / szt. + cena za transport
0.300 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig oraz budowę magnesu neodymowego wyliczysz u nas w
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry techniczne produktu - MW 5x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010089 |
| GTIN/EAN | 5906301810889 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 0.59 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.84 kg / 8.26 N |
| Indukcja magnetyczna ~ ? | 524.45 mT / 5244 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Niniejsze dane stanowią rezultat analizy fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 5x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5236 Gs
523.6 mT
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
bezpieczny |
| 1 mm |
3243 Gs
324.3 mT
|
0.32 kg / 0.71 lbs
322.1 g / 3.2 N
|
bezpieczny |
| 2 mm |
1850 Gs
185.0 mT
|
0.10 kg / 0.23 lbs
104.8 g / 1.0 N
|
bezpieczny |
| 3 mm |
1076 Gs
107.6 mT
|
0.04 kg / 0.08 lbs
35.5 g / 0.3 N
|
bezpieczny |
| 5 mm |
428 Gs
42.8 mT
|
0.01 kg / 0.01 lbs
5.6 g / 0.1 N
|
bezpieczny |
| 10 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
| 15 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 5x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 5x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 0.56 lbs
252.0 g / 2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 5x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 1 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 2 mm |
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 3 mm |
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 5 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 10 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 11 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 12 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 5x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
OK |
| 40 °C | -2.2% |
0.82 kg / 1.81 lbs
821.5 g / 8.1 N
|
OK |
| 60 °C | -4.4% |
0.80 kg / 1.77 lbs
803.0 g / 7.9 N
|
OK |
| 80 °C | -6.6% |
0.78 kg / 1.73 lbs
784.6 g / 7.7 N
|
|
| 100 °C | -28.8% |
0.60 kg / 1.32 lbs
598.1 g / 5.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 5x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.32 kg / 7.32 lbs
5 894 Gs
|
0.50 kg / 1.10 lbs
498 g / 4.9 N
|
N/A |
| 1 mm |
2.14 kg / 4.72 lbs
8 408 Gs
|
0.32 kg / 0.71 lbs
321 g / 3.1 N
|
1.93 kg / 4.24 lbs
~0 Gs
|
| 2 mm |
1.27 kg / 2.81 lbs
6 486 Gs
|
0.19 kg / 0.42 lbs
191 g / 1.9 N
|
1.15 kg / 2.53 lbs
~0 Gs
|
| 3 mm |
0.73 kg / 1.61 lbs
4 909 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.45 lbs
~0 Gs
|
| 5 mm |
0.24 kg / 0.53 lbs
2 805 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.21 kg / 0.47 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.05 lbs
857 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
177 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 5x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 5x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
38.06 km/h
(10.57 m/s)
|
0.03 J | |
| 30 mm |
65.91 km/h
(18.31 m/s)
|
0.10 J | |
| 50 mm |
85.09 km/h
(23.64 m/s)
|
0.16 J | |
| 100 mm |
120.34 km/h
(33.43 m/s)
|
0.33 J |
Tabela 9: Odporność na korozję
MW 5x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 5x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 046 Mx | 10.5 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.84 kg | Standard |
| Woda (dno rzeki) |
0.96 kg
(+0.12 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni kontaktu
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Bezpieczna praca
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Rozruszniki serca
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem dzieci i zwierząt.
Urządzenia elektroniczne
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Nadwrażliwość na metale
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Temperatura pracy
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Samozapłon
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
