MW 18x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010037
GTIN/EAN: 5906301810360
Średnica Ø
18 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
2.86 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.95 kg / 9.34 N
Indukcja magnetyczna
101.91 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
1.353 ZŁ z VAT / szt. + cena za transport
1.100 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość korzystając z
formularz zapytania
w sekcji kontakt.
Właściwości i formę magnesów neodymowych zobaczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MW 18x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010037 |
| GTIN/EAN | 5906301810360 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 2.86 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.95 kg / 9.34 N |
| Indukcja magnetyczna ~ ? | 101.91 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze wartości są rezultat analizy inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 18x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1019 Gs
101.9 mT
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
bezpieczny |
| 1 mm |
975 Gs
97.5 mT
|
0.87 kg / 1.92 lbs
869.2 g / 8.5 N
|
bezpieczny |
| 2 mm |
902 Gs
90.2 mT
|
0.74 kg / 1.64 lbs
744.7 g / 7.3 N
|
bezpieczny |
| 3 mm |
812 Gs
81.2 mT
|
0.60 kg / 1.33 lbs
603.4 g / 5.9 N
|
bezpieczny |
| 5 mm |
619 Gs
61.9 mT
|
0.35 kg / 0.77 lbs
350.6 g / 3.4 N
|
bezpieczny |
| 10 mm |
274 Gs
27.4 mT
|
0.07 kg / 0.15 lbs
68.7 g / 0.7 N
|
bezpieczny |
| 15 mm |
126 Gs
12.6 mT
|
0.01 kg / 0.03 lbs
14.6 g / 0.1 N
|
bezpieczny |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.01 lbs
3.9 g / 0.0 N
|
bezpieczny |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 18x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 18x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.29 kg / 0.63 lbs
285.0 g / 2.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 18x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| 1 mm |
|
0.24 kg / 0.52 lbs
237.5 g / 2.3 N
|
| 2 mm |
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
| 3 mm |
|
0.71 kg / 1.57 lbs
712.5 g / 7.0 N
|
| 5 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 10 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 11 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 12 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 18x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
OK |
| 40 °C | -2.2% |
0.93 kg / 2.05 lbs
929.1 g / 9.1 N
|
OK |
| 60 °C | -4.4% |
0.91 kg / 2.00 lbs
908.2 g / 8.9 N
|
|
| 80 °C | -6.6% |
0.89 kg / 1.96 lbs
887.3 g / 8.7 N
|
|
| 100 °C | -28.8% |
0.68 kg / 1.49 lbs
676.4 g / 6.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 18x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.63 kg / 3.59 lbs
1 960 Gs
|
0.24 kg / 0.54 lbs
244 g / 2.4 N
|
N/A |
| 1 mm |
1.57 kg / 3.47 lbs
2 002 Gs
|
0.24 kg / 0.52 lbs
236 g / 2.3 N
|
1.41 kg / 3.12 lbs
~0 Gs
|
| 2 mm |
1.49 kg / 3.29 lbs
1 949 Gs
|
0.22 kg / 0.49 lbs
224 g / 2.2 N
|
1.34 kg / 2.96 lbs
~0 Gs
|
| 3 mm |
1.39 kg / 3.06 lbs
1 883 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 5 mm |
1.16 kg / 2.55 lbs
1 717 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.04 kg / 2.30 lbs
~0 Gs
|
| 10 mm |
0.60 kg / 1.33 lbs
1 238 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 20 mm |
0.12 kg / 0.26 lbs
548 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 18x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 18x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.19 km/h
(5.33 m/s)
|
0.04 J | |
| 30 mm |
31.85 km/h
(8.85 m/s)
|
0.11 J | |
| 50 mm |
41.10 km/h
(11.42 m/s)
|
0.19 J | |
| 100 mm |
58.12 km/h
(16.15 m/s)
|
0.37 J |
Tabela 9: Odporność na korozję
MW 18x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 18x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 519 Mx | 35.2 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 18x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.95 kg | Standard |
| Woda (dno rzeki) |
1.09 kg
(+0.14 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) mają estetyczny, błyszczący wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- przy bezpośrednim styku (brak zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – obecność ciała obcego (farba, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość blachy – zbyt cienka płyta nie przyjmuje całego pola, przez co część strumienia marnuje się w powietrzu.
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Uczulenie na powłokę
Część populacji ma uczulenie na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może wywołać silną reakcję alergiczną. Wskazane jest używanie rękawiczek ochronnych.
Zagrożenie wybuchem pyłu
Proszek generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Wpływ na smartfony
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Siła neodymu
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Chronić przed dziećmi
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Implanty medyczne
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
