Magnesy neodymowe: siła, której szukasz

Potrzebujesz niezawodnego pola magnetycznego? Oferujemy bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. Są one idealne do użytku w domu, garażu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

poznaj cennik i wymiary

Magnet fishing: mocne zestawy F200/F400

Odkryj pasję z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i ogromnego udźwigu. Nierdzewna konstrukcja oraz wzmocnione liny sprawdzą się w każdej wodzie.

znajdź sprzęt do poszukiwań

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do montażu bezinwazyjnego. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy mocowaniu oświetlenia, czujników oraz banerów.

zobacz zastosowania przemysłowe

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt na zamówienie Wysyłamy za 3-5 dni

MW 100x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010001

GTIN/EAN: 5906301810018

5.00

Średnica Ø

100 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

589.05 g

Kierunek magnesowania

↑ osiowy

Udźwig

40.86 kg / 400.80 N

Indukcja magnetyczna

121.59 mT / 1216 Gs

Powłoka

[NiCuNi] nikiel

368.50 z VAT / szt. + cena za transport

299.59 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
299.59 ZŁ
368.50 ZŁ
cena od 5 szt.
281.61 ZŁ
346.39 ZŁ
cena od 10 szt.
263.64 ZŁ
324.28 ZŁ
Chcesz się targować?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 ewentualnie napisz korzystając z formularz zapytania na naszej stronie.
Udźwig oraz formę magnesów neodymowych skontrolujesz u nas w kalkulatorze siły.

Zamów do 14:00, a wyślemy dziś!

Właściwości fizyczne MW 100x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 100x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010001
GTIN/EAN 5906301810018
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 100 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 589.05 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 40.86 kg / 400.80 N
Indukcja magnetyczna ~ ? 121.59 mT / 1216 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 100x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu - dane

Niniejsze informacje są rezultat kalkulacji inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 100x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1216 Gs
121.6 mT
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
miażdżący
1 mm 1208 Gs
120.8 mT
40.35 kg / 88.95 lbs
40345.4 g / 395.8 N
miażdżący
2 mm 1199 Gs
119.9 mT
39.74 kg / 87.62 lbs
39742.7 g / 389.9 N
miażdżący
3 mm 1189 Gs
118.9 mT
39.06 kg / 86.12 lbs
39062.0 g / 383.2 N
miażdżący
5 mm 1165 Gs
116.5 mT
37.49 kg / 82.65 lbs
37490.2 g / 367.8 N
miażdżący
10 mm 1087 Gs
108.7 mT
32.64 kg / 71.96 lbs
32640.7 g / 320.2 N
miażdżący
15 mm 991 Gs
99.1 mT
27.15 kg / 59.86 lbs
27153.9 g / 266.4 N
miażdżący
20 mm 887 Gs
88.7 mT
21.76 kg / 47.97 lbs
21758.7 g / 213.5 N
miażdżący
30 mm 683 Gs
68.3 mT
12.90 kg / 28.45 lbs
12902.7 g / 126.6 N
miażdżący
50 mm 379 Gs
37.9 mT
3.97 kg / 8.75 lbs
3968.4 g / 38.9 N
mocny

Tabela 2: Równoległa siła obsunięcia (ściana)
MW 100x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
1 mm Stal (~0.2) 8.07 kg / 17.79 lbs
8070.0 g / 79.2 N
2 mm Stal (~0.2) 7.95 kg / 17.52 lbs
7948.0 g / 78.0 N
3 mm Stal (~0.2) 7.81 kg / 17.22 lbs
7812.0 g / 76.6 N
5 mm Stal (~0.2) 7.50 kg / 16.53 lbs
7498.0 g / 73.6 N
10 mm Stal (~0.2) 6.53 kg / 14.39 lbs
6528.0 g / 64.0 N
15 mm Stal (~0.2) 5.43 kg / 11.97 lbs
5430.0 g / 53.3 N
20 mm Stal (~0.2) 4.35 kg / 9.59 lbs
4352.0 g / 42.7 N
30 mm Stal (~0.2) 2.58 kg / 5.69 lbs
2580.0 g / 25.3 N
50 mm Stal (~0.2) 0.79 kg / 1.75 lbs
794.0 g / 7.8 N

Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 100x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
12.26 kg / 27.02 lbs
12258.0 g / 120.3 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N

Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 100x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
2.04 kg / 4.50 lbs
2043.0 g / 20.0 N
1 mm
13%
5.11 kg / 11.26 lbs
5107.5 g / 50.1 N
2 mm
25%
10.22 kg / 22.52 lbs
10215.0 g / 100.2 N
3 mm
38%
15.32 kg / 33.78 lbs
15322.5 g / 150.3 N
5 mm
63%
25.54 kg / 56.30 lbs
25537.5 g / 250.5 N
10 mm
100%
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
11 mm
100%
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
12 mm
100%
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N

Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 100x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
OK
40 °C -2.2% 39.96 kg / 88.10 lbs
39961.1 g / 392.0 N
OK
60 °C -4.4% 39.06 kg / 86.12 lbs
39062.2 g / 383.2 N
80 °C -6.6% 38.16 kg / 84.14 lbs
38163.2 g / 374.4 N
100 °C -28.8% 29.09 kg / 64.14 lbs
29092.3 g / 285.4 N

Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 100x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 71.58 kg / 157.80 lbs
2 302 Gs
10.74 kg / 23.67 lbs
10737 g / 105.3 N
N/A
1 mm 71.15 kg / 156.86 lbs
2 424 Gs
10.67 kg / 23.53 lbs
10673 g / 104.7 N
64.04 kg / 141.17 lbs
~0 Gs
2 mm 70.68 kg / 155.82 lbs
2 416 Gs
10.60 kg / 23.37 lbs
10602 g / 104.0 N
63.61 kg / 140.23 lbs
~0 Gs
3 mm 70.17 kg / 154.69 lbs
2 408 Gs
10.53 kg / 23.20 lbs
10525 g / 103.3 N
63.15 kg / 139.22 lbs
~0 Gs
5 mm 69.04 kg / 152.21 lbs
2 388 Gs
10.36 kg / 22.83 lbs
10356 g / 101.6 N
62.14 kg / 136.99 lbs
~0 Gs
10 mm 65.68 kg / 144.79 lbs
2 329 Gs
9.85 kg / 21.72 lbs
9851 g / 96.6 N
59.11 kg / 130.31 lbs
~0 Gs
20 mm 57.18 kg / 126.06 lbs
2 173 Gs
8.58 kg / 18.91 lbs
8577 g / 84.1 N
51.46 kg / 113.45 lbs
~0 Gs
50 mm 29.67 kg / 65.40 lbs
1 565 Gs
4.45 kg / 9.81 lbs
4450 g / 43.7 N
26.70 kg / 58.86 lbs
~0 Gs
60 mm 22.60 kg / 49.83 lbs
1 366 Gs
3.39 kg / 7.47 lbs
3390 g / 33.3 N
20.34 kg / 44.85 lbs
~0 Gs
70 mm 16.98 kg / 37.43 lbs
1 184 Gs
2.55 kg / 5.61 lbs
2546 g / 25.0 N
15.28 kg / 33.68 lbs
~0 Gs
80 mm 12.64 kg / 27.87 lbs
1 022 Gs
1.90 kg / 4.18 lbs
1896 g / 18.6 N
11.38 kg / 25.08 lbs
~0 Gs
90 mm 9.38 kg / 20.67 lbs
880 Gs
1.41 kg / 3.10 lbs
1406 g / 13.8 N
8.44 kg / 18.60 lbs
~0 Gs
100 mm 6.95 kg / 15.33 lbs
758 Gs
1.04 kg / 2.30 lbs
1043 g / 10.2 N
6.26 kg / 13.79 lbs
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 100x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 31.0 cm
Implant słuchowy 10 Gs (1.0 mT) 24.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 19.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 14.5 cm
Pilot do auta 50 Gs (5.0 mT) 13.5 cm
Karta płatnicza 400 Gs (40.0 mT) 5.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 3.5 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 100x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 11.87 km/h
(3.30 m/s)
3.20 J
30 mm 17.18 km/h
(4.77 m/s)
6.71 J
50 mm 19.89 km/h
(5.52 m/s)
8.99 J
100 mm 26.67 km/h
(7.41 m/s)
16.17 J

Tabela 9: Trwałość powłoki antykorozyjnej
MW 100x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Flux)
MW 100x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 125 951 Mx 1259.5 µWb
Współczynnik Pc 0.16 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 100x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 40.86 kg Standard
Woda (dno rzeki) 46.78 kg
(+5.92 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Ześlizg (ściana)

*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.

3. Wytrzymałość temperaturowa

*Dla standardowych magnesów maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010001-2026
Szybki konwerter jednostek
Siła (udźwig)

Moc pola

Zobacz też inne propozycje

Prezentowany produkt to ekstremalnie mocny magnes w kształcie walca, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø100x10 mm gwarantuje najwyższą gęstość energii. Komponent MW 100x10 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o dużej sile (ok. 40.86 kg), produkt ten jest dostępny natychmiast z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Ponadto, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest idealny do budowy prądnic, zaawansowanych sensorów Halla oraz wydajnych filtrów, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 400.80 N przy wadze zaledwie 589.05 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na delikatną strukturę spieku ceramicznego, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego precyzyjnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się żywice anaerobowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najczęściej wybierany standard dla przemysłowych magnesów neodymowych, oferujący świetny balans ekonomiczny oraz wysoką odporność na demagnetyzację. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø100x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø100x10 mm, co przy wadze 589.05 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 400.80 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 589.05 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 100 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety i wady magnesów z neodymu Nd2Fe14B.

Zalety

Neodymy to nie tylko moc przyciągania, ale także inne istotne właściwości, w tym::
  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
  • Wyróżniają się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
  • Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
  • Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
  • Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Minusy

Warto znać też słabe strony magnesów neodymowych:
  • Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
  • Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
  • Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.

Charakterystyka udźwigu

Najwyższa nośność magnesuod czego zależy?

Widoczny w opisie parametr udźwigu odnosi się do wartości maksymalnej, zarejestrowanej w środowisku optymalnym, co oznacza test:
  • przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
  • której grubość sięga przynajmniej 10 mm
  • charakteryzującej się brakiem chropowatości
  • w warunkach braku dystansu (metal do metalu)
  • podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
  • w standardowej temperaturze otoczenia

Udźwig w praktyce – czynniki wpływu

Podczas codziennego użytkowania, rzeczywisty udźwig wynika z szeregu czynników, które przedstawiamy od najbardziej istotnych:
  • Szczelina powietrzna (między magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
  • Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
  • Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
  • Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
  • Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.

Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.

Zasady BHP dla użytkowników magnesów
Ostrożność wymagana

Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.

Ochrona urządzeń

Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.

Uwaga na odpryski

Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.

Wrażliwość na ciepło

Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).

Łatwopalność

Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.

Interferencja magnetyczna

Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.

Unikaj kontaktu w przypadku alergii

Część populacji wykazuje uczulenie na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Wskazane jest stosowanie rękawiczek ochronnych.

Uwaga medyczna

Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.

Ryzyko połknięcia

Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.

Ryzyko złamań

Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.

Safety First! Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98