MW 100x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010001
GTIN/EAN: 5906301810018
Średnica Ø
100 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
589.05 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.86 kg / 400.80 N
Indukcja magnetyczna
121.59 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
368.50 ZŁ z VAT / szt. + cena za transport
299.59 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub skontaktuj się poprzez
formularz zapytania
przez naszą stronę.
Moc oraz budowę elementów magnetycznych przetestujesz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MW 100x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010001 |
| GTIN/EAN | 5906301810018 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 589.05 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.86 kg / 400.80 N |
| Indukcja magnetyczna ~ ? | 121.59 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt kalkulacji fizycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 100x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
niebezpieczny! |
| 1 mm |
1208 Gs
120.8 mT
|
40.35 kg / 88.95 lbs
40345.4 g / 395.8 N
|
niebezpieczny! |
| 2 mm |
1199 Gs
119.9 mT
|
39.74 kg / 87.62 lbs
39742.7 g / 389.9 N
|
niebezpieczny! |
| 3 mm |
1189 Gs
118.9 mT
|
39.06 kg / 86.12 lbs
39062.0 g / 383.2 N
|
niebezpieczny! |
| 5 mm |
1165 Gs
116.5 mT
|
37.49 kg / 82.65 lbs
37490.2 g / 367.8 N
|
niebezpieczny! |
| 10 mm |
1087 Gs
108.7 mT
|
32.64 kg / 71.96 lbs
32640.7 g / 320.2 N
|
niebezpieczny! |
| 15 mm |
991 Gs
99.1 mT
|
27.15 kg / 59.86 lbs
27153.9 g / 266.4 N
|
niebezpieczny! |
| 20 mm |
887 Gs
88.7 mT
|
21.76 kg / 47.97 lbs
21758.7 g / 213.5 N
|
niebezpieczny! |
| 30 mm |
683 Gs
68.3 mT
|
12.90 kg / 28.45 lbs
12902.7 g / 126.6 N
|
niebezpieczny! |
| 50 mm |
379 Gs
37.9 mT
|
3.97 kg / 8.75 lbs
3968.4 g / 38.9 N
|
mocny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 100x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
|
| 1 mm | Stal (~0.2) |
8.07 kg / 17.79 lbs
8070.0 g / 79.2 N
|
| 2 mm | Stal (~0.2) |
7.95 kg / 17.52 lbs
7948.0 g / 78.0 N
|
| 3 mm | Stal (~0.2) |
7.81 kg / 17.22 lbs
7812.0 g / 76.6 N
|
| 5 mm | Stal (~0.2) |
7.50 kg / 16.53 lbs
7498.0 g / 73.6 N
|
| 10 mm | Stal (~0.2) |
6.53 kg / 14.39 lbs
6528.0 g / 64.0 N
|
| 15 mm | Stal (~0.2) |
5.43 kg / 11.97 lbs
5430.0 g / 53.3 N
|
| 20 mm | Stal (~0.2) |
4.35 kg / 9.59 lbs
4352.0 g / 42.7 N
|
| 30 mm | Stal (~0.2) |
2.58 kg / 5.69 lbs
2580.0 g / 25.3 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 1.75 lbs
794.0 g / 7.8 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 100x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.26 kg / 27.02 lbs
12258.0 g / 120.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 100x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.04 kg / 4.50 lbs
2043.0 g / 20.0 N
|
| 1 mm |
|
5.11 kg / 11.26 lbs
5107.5 g / 50.1 N
|
| 2 mm |
|
10.22 kg / 22.52 lbs
10215.0 g / 100.2 N
|
| 3 mm |
|
15.32 kg / 33.78 lbs
15322.5 g / 150.3 N
|
| 5 mm |
|
25.54 kg / 56.30 lbs
25537.5 g / 250.5 N
|
| 10 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
| 11 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
| 12 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 100x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
OK |
| 40 °C | -2.2% |
39.96 kg / 88.10 lbs
39961.1 g / 392.0 N
|
OK |
| 60 °C | -4.4% |
39.06 kg / 86.12 lbs
39062.2 g / 383.2 N
|
|
| 80 °C | -6.6% |
38.16 kg / 84.14 lbs
38163.2 g / 374.4 N
|
|
| 100 °C | -28.8% |
29.09 kg / 64.14 lbs
29092.3 g / 285.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 100x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.58 kg / 157.80 lbs
2 302 Gs
|
10.74 kg / 23.67 lbs
10737 g / 105.3 N
|
N/A |
| 1 mm |
71.15 kg / 156.86 lbs
2 424 Gs
|
10.67 kg / 23.53 lbs
10673 g / 104.7 N
|
64.04 kg / 141.17 lbs
~0 Gs
|
| 2 mm |
70.68 kg / 155.82 lbs
2 416 Gs
|
10.60 kg / 23.37 lbs
10602 g / 104.0 N
|
63.61 kg / 140.23 lbs
~0 Gs
|
| 3 mm |
70.17 kg / 154.69 lbs
2 408 Gs
|
10.53 kg / 23.20 lbs
10525 g / 103.3 N
|
63.15 kg / 139.22 lbs
~0 Gs
|
| 5 mm |
69.04 kg / 152.21 lbs
2 388 Gs
|
10.36 kg / 22.83 lbs
10356 g / 101.6 N
|
62.14 kg / 136.99 lbs
~0 Gs
|
| 10 mm |
65.68 kg / 144.79 lbs
2 329 Gs
|
9.85 kg / 21.72 lbs
9851 g / 96.6 N
|
59.11 kg / 130.31 lbs
~0 Gs
|
| 20 mm |
57.18 kg / 126.06 lbs
2 173 Gs
|
8.58 kg / 18.91 lbs
8577 g / 84.1 N
|
51.46 kg / 113.45 lbs
~0 Gs
|
| 50 mm |
29.67 kg / 65.40 lbs
1 565 Gs
|
4.45 kg / 9.81 lbs
4450 g / 43.7 N
|
26.70 kg / 58.86 lbs
~0 Gs
|
| 60 mm |
22.60 kg / 49.83 lbs
1 366 Gs
|
3.39 kg / 7.47 lbs
3390 g / 33.3 N
|
20.34 kg / 44.85 lbs
~0 Gs
|
| 70 mm |
16.98 kg / 37.43 lbs
1 184 Gs
|
2.55 kg / 5.61 lbs
2546 g / 25.0 N
|
15.28 kg / 33.68 lbs
~0 Gs
|
| 80 mm |
12.64 kg / 27.87 lbs
1 022 Gs
|
1.90 kg / 4.18 lbs
1896 g / 18.6 N
|
11.38 kg / 25.08 lbs
~0 Gs
|
| 90 mm |
9.38 kg / 20.67 lbs
880 Gs
|
1.41 kg / 3.10 lbs
1406 g / 13.8 N
|
8.44 kg / 18.60 lbs
~0 Gs
|
| 100 mm |
6.95 kg / 15.33 lbs
758 Gs
|
1.04 kg / 2.30 lbs
1043 g / 10.2 N
|
6.26 kg / 13.79 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 100x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 100x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.87 km/h
(3.30 m/s)
|
3.20 J | |
| 30 mm |
17.18 km/h
(4.77 m/s)
|
6.71 J | |
| 50 mm |
19.89 km/h
(5.52 m/s)
|
8.99 J | |
| 100 mm |
26.67 km/h
(7.41 m/s)
|
16.17 J |
Tabela 9: Parametry powłoki (trwałość)
MW 100x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 100x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 125 951 Mx | 1259.5 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 100x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.86 kg | Standard |
| Woda (dno rzeki) |
46.78 kg
(+5.92 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o grubości wynoszącej minimum 10 mm
- o szlifowanej powierzchni kontaktu
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (między magnesem a blachą), bowiem nawet bardzo mała przerwa (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko uczulenia
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Zagrożenie fizyczne
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie przegrzewaj magnesów
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Uwaga: zadławienie
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Ogromna siła
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Wpływ na zdrowie
Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
