MW 100x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010001
GTIN/EAN: 5906301810018
Średnica Ø
100 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
589.05 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.86 kg / 400.80 N
Indukcja magnetyczna
121.59 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
368.50 ZŁ z VAT / szt. + cena za transport
299.59 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
lub napisz za pomocą
formularz zgłoszeniowy
na naszej stronie.
Siłę oraz wygląd magnesów skontrolujesz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja - MW 100x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010001 |
| GTIN/EAN | 5906301810018 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 589.05 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.86 kg / 400.80 N |
| Indukcja magnetyczna ~ ? | 121.59 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Niniejsze wartości są rezultat analizy matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 100x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
40.86 kg / 40860.0 g
400.8 N
|
miażdżący |
| 1 mm |
1208 Gs
120.8 mT
|
40.35 kg / 40345.4 g
395.8 N
|
miażdżący |
| 2 mm |
1199 Gs
119.9 mT
|
39.74 kg / 39742.7 g
389.9 N
|
miażdżący |
| 3 mm |
1189 Gs
118.9 mT
|
39.06 kg / 39062.0 g
383.2 N
|
miażdżący |
| 5 mm |
1165 Gs
116.5 mT
|
37.49 kg / 37490.2 g
367.8 N
|
miażdżący |
| 10 mm |
1087 Gs
108.7 mT
|
32.64 kg / 32640.7 g
320.2 N
|
miażdżący |
| 15 mm |
991 Gs
99.1 mT
|
27.15 kg / 27153.9 g
266.4 N
|
miażdżący |
| 20 mm |
887 Gs
88.7 mT
|
21.76 kg / 21758.7 g
213.5 N
|
miażdżący |
| 30 mm |
683 Gs
68.3 mT
|
12.90 kg / 12902.7 g
126.6 N
|
miażdżący |
| 50 mm |
379 Gs
37.9 mT
|
3.97 kg / 3968.4 g
38.9 N
|
średnie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 100x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.17 kg / 8172.0 g
80.2 N
|
| 1 mm | Stal (~0.2) |
8.07 kg / 8070.0 g
79.2 N
|
| 2 mm | Stal (~0.2) |
7.95 kg / 7948.0 g
78.0 N
|
| 3 mm | Stal (~0.2) |
7.81 kg / 7812.0 g
76.6 N
|
| 5 mm | Stal (~0.2) |
7.50 kg / 7498.0 g
73.6 N
|
| 10 mm | Stal (~0.2) |
6.53 kg / 6528.0 g
64.0 N
|
| 15 mm | Stal (~0.2) |
5.43 kg / 5430.0 g
53.3 N
|
| 20 mm | Stal (~0.2) |
4.35 kg / 4352.0 g
42.7 N
|
| 30 mm | Stal (~0.2) |
2.58 kg / 2580.0 g
25.3 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 794.0 g
7.8 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 100x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.26 kg / 12258.0 g
120.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.17 kg / 8172.0 g
80.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.09 kg / 4086.0 g
40.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.43 kg / 20430.0 g
200.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 100x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.04 kg / 2043.0 g
20.0 N
|
| 1 mm |
|
5.11 kg / 5107.5 g
50.1 N
|
| 2 mm |
|
10.22 kg / 10215.0 g
100.2 N
|
| 5 mm |
|
25.54 kg / 25537.5 g
250.5 N
|
| 10 mm |
|
40.86 kg / 40860.0 g
400.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 100x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.86 kg / 40860.0 g
400.8 N
|
OK |
| 40 °C | -2.2% |
39.96 kg / 39961.1 g
392.0 N
|
OK |
| 60 °C | -4.4% |
39.06 kg / 39062.2 g
383.2 N
|
|
| 80 °C | -6.6% |
38.16 kg / 38163.2 g
374.4 N
|
|
| 100 °C | -28.8% |
29.09 kg / 29092.3 g
285.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 100x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
71.58 kg / 71579 g
702.2 N
2 302 Gs
|
N/A |
| 1 mm |
71.15 kg / 71151 g
698.0 N
2 424 Gs
|
64.04 kg / 64036 g
628.2 N
~0 Gs
|
| 2 mm |
70.68 kg / 70677 g
693.3 N
2 416 Gs
|
63.61 kg / 63609 g
624.0 N
~0 Gs
|
| 3 mm |
70.17 kg / 70167 g
688.3 N
2 408 Gs
|
63.15 kg / 63150 g
619.5 N
~0 Gs
|
| 5 mm |
69.04 kg / 69042 g
677.3 N
2 388 Gs
|
62.14 kg / 62138 g
609.6 N
~0 Gs
|
| 10 mm |
65.68 kg / 65676 g
644.3 N
2 329 Gs
|
59.11 kg / 59108 g
579.8 N
~0 Gs
|
| 20 mm |
57.18 kg / 57180 g
560.9 N
2 173 Gs
|
51.46 kg / 51462 g
504.8 N
~0 Gs
|
| 50 mm |
29.67 kg / 29666 g
291.0 N
1 565 Gs
|
26.70 kg / 26700 g
261.9 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 100x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 14.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 100x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.87 km/h
(3.30 m/s)
|
3.20 J | |
| 30 mm |
17.18 km/h
(4.77 m/s)
|
6.71 J | |
| 50 mm |
19.89 km/h
(5.52 m/s)
|
8.99 J | |
| 100 mm |
26.67 km/h
(7.41 m/s)
|
16.17 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 100x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 100x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 125 951 Mx | 1259.5 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 100x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.86 kg | Standard |
| Woda (dno rzeki) |
46.78 kg
(+5.92 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- z wykorzystaniem płyty ze miękkiej stali, pełniącej rolę zwora magnetyczna
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez powłok)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – występowanie ciała obcego (farba, taśma, powietrze) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Nie wierć w magnesach
Pył generowany podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Bezpieczny dystans
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Implanty medyczne
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może zakłócić pracę urządzenia ratującego życie.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ostrzeżenie dla alergików
Pewna grupa użytkowników posiada alergię kontaktową na nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może skutkować silną reakcję alergiczną. Sugerujemy stosowanie rękawic bezlateksowych.
