MW 100x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010001
GTIN/EAN: 5906301810018
Średnica Ø
100 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
589.05 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.86 kg / 400.80 N
Indukcja magnetyczna
121.59 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
368.50 ZŁ z VAT / szt. + cena za transport
299.59 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie napisz korzystając z
formularz zapytania
na naszej stronie.
Udźwig oraz formę magnesów neodymowych skontrolujesz u nas w
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 100x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010001 |
| GTIN/EAN | 5906301810018 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 589.05 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.86 kg / 400.80 N |
| Indukcja magnetyczna ~ ? | 121.59 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Niniejsze informacje są rezultat kalkulacji inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 100x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
miażdżący |
| 1 mm |
1208 Gs
120.8 mT
|
40.35 kg / 88.95 lbs
40345.4 g / 395.8 N
|
miażdżący |
| 2 mm |
1199 Gs
119.9 mT
|
39.74 kg / 87.62 lbs
39742.7 g / 389.9 N
|
miażdżący |
| 3 mm |
1189 Gs
118.9 mT
|
39.06 kg / 86.12 lbs
39062.0 g / 383.2 N
|
miażdżący |
| 5 mm |
1165 Gs
116.5 mT
|
37.49 kg / 82.65 lbs
37490.2 g / 367.8 N
|
miażdżący |
| 10 mm |
1087 Gs
108.7 mT
|
32.64 kg / 71.96 lbs
32640.7 g / 320.2 N
|
miażdżący |
| 15 mm |
991 Gs
99.1 mT
|
27.15 kg / 59.86 lbs
27153.9 g / 266.4 N
|
miażdżący |
| 20 mm |
887 Gs
88.7 mT
|
21.76 kg / 47.97 lbs
21758.7 g / 213.5 N
|
miażdżący |
| 30 mm |
683 Gs
68.3 mT
|
12.90 kg / 28.45 lbs
12902.7 g / 126.6 N
|
miażdżący |
| 50 mm |
379 Gs
37.9 mT
|
3.97 kg / 8.75 lbs
3968.4 g / 38.9 N
|
mocny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 100x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
|
| 1 mm | Stal (~0.2) |
8.07 kg / 17.79 lbs
8070.0 g / 79.2 N
|
| 2 mm | Stal (~0.2) |
7.95 kg / 17.52 lbs
7948.0 g / 78.0 N
|
| 3 mm | Stal (~0.2) |
7.81 kg / 17.22 lbs
7812.0 g / 76.6 N
|
| 5 mm | Stal (~0.2) |
7.50 kg / 16.53 lbs
7498.0 g / 73.6 N
|
| 10 mm | Stal (~0.2) |
6.53 kg / 14.39 lbs
6528.0 g / 64.0 N
|
| 15 mm | Stal (~0.2) |
5.43 kg / 11.97 lbs
5430.0 g / 53.3 N
|
| 20 mm | Stal (~0.2) |
4.35 kg / 9.59 lbs
4352.0 g / 42.7 N
|
| 30 mm | Stal (~0.2) |
2.58 kg / 5.69 lbs
2580.0 g / 25.3 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 1.75 lbs
794.0 g / 7.8 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 100x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.26 kg / 27.02 lbs
12258.0 g / 120.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 100x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.04 kg / 4.50 lbs
2043.0 g / 20.0 N
|
| 1 mm |
|
5.11 kg / 11.26 lbs
5107.5 g / 50.1 N
|
| 2 mm |
|
10.22 kg / 22.52 lbs
10215.0 g / 100.2 N
|
| 3 mm |
|
15.32 kg / 33.78 lbs
15322.5 g / 150.3 N
|
| 5 mm |
|
25.54 kg / 56.30 lbs
25537.5 g / 250.5 N
|
| 10 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
| 11 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
| 12 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 100x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
OK |
| 40 °C | -2.2% |
39.96 kg / 88.10 lbs
39961.1 g / 392.0 N
|
OK |
| 60 °C | -4.4% |
39.06 kg / 86.12 lbs
39062.2 g / 383.2 N
|
|
| 80 °C | -6.6% |
38.16 kg / 84.14 lbs
38163.2 g / 374.4 N
|
|
| 100 °C | -28.8% |
29.09 kg / 64.14 lbs
29092.3 g / 285.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 100x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.58 kg / 157.80 lbs
2 302 Gs
|
10.74 kg / 23.67 lbs
10737 g / 105.3 N
|
N/A |
| 1 mm |
71.15 kg / 156.86 lbs
2 424 Gs
|
10.67 kg / 23.53 lbs
10673 g / 104.7 N
|
64.04 kg / 141.17 lbs
~0 Gs
|
| 2 mm |
70.68 kg / 155.82 lbs
2 416 Gs
|
10.60 kg / 23.37 lbs
10602 g / 104.0 N
|
63.61 kg / 140.23 lbs
~0 Gs
|
| 3 mm |
70.17 kg / 154.69 lbs
2 408 Gs
|
10.53 kg / 23.20 lbs
10525 g / 103.3 N
|
63.15 kg / 139.22 lbs
~0 Gs
|
| 5 mm |
69.04 kg / 152.21 lbs
2 388 Gs
|
10.36 kg / 22.83 lbs
10356 g / 101.6 N
|
62.14 kg / 136.99 lbs
~0 Gs
|
| 10 mm |
65.68 kg / 144.79 lbs
2 329 Gs
|
9.85 kg / 21.72 lbs
9851 g / 96.6 N
|
59.11 kg / 130.31 lbs
~0 Gs
|
| 20 mm |
57.18 kg / 126.06 lbs
2 173 Gs
|
8.58 kg / 18.91 lbs
8577 g / 84.1 N
|
51.46 kg / 113.45 lbs
~0 Gs
|
| 50 mm |
29.67 kg / 65.40 lbs
1 565 Gs
|
4.45 kg / 9.81 lbs
4450 g / 43.7 N
|
26.70 kg / 58.86 lbs
~0 Gs
|
| 60 mm |
22.60 kg / 49.83 lbs
1 366 Gs
|
3.39 kg / 7.47 lbs
3390 g / 33.3 N
|
20.34 kg / 44.85 lbs
~0 Gs
|
| 70 mm |
16.98 kg / 37.43 lbs
1 184 Gs
|
2.55 kg / 5.61 lbs
2546 g / 25.0 N
|
15.28 kg / 33.68 lbs
~0 Gs
|
| 80 mm |
12.64 kg / 27.87 lbs
1 022 Gs
|
1.90 kg / 4.18 lbs
1896 g / 18.6 N
|
11.38 kg / 25.08 lbs
~0 Gs
|
| 90 mm |
9.38 kg / 20.67 lbs
880 Gs
|
1.41 kg / 3.10 lbs
1406 g / 13.8 N
|
8.44 kg / 18.60 lbs
~0 Gs
|
| 100 mm |
6.95 kg / 15.33 lbs
758 Gs
|
1.04 kg / 2.30 lbs
1043 g / 10.2 N
|
6.26 kg / 13.79 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 100x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 100x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.87 km/h
(3.30 m/s)
|
3.20 J | |
| 30 mm |
17.18 km/h
(4.77 m/s)
|
6.71 J | |
| 50 mm |
19.89 km/h
(5.52 m/s)
|
8.99 J | |
| 100 mm |
26.67 km/h
(7.41 m/s)
|
16.17 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 100x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 100x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 125 951 Mx | 1259.5 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 100x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.86 kg | Standard |
| Woda (dno rzeki) |
46.78 kg
(+5.92 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (między magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Zasady BHP dla użytkowników magnesów
Ostrożność wymagana
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Ochrona urządzeń
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Wrażliwość na ciepło
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Unikaj kontaktu w przypadku alergii
Część populacji wykazuje uczulenie na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Wskazane jest stosowanie rękawiczek ochronnych.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Ryzyko połknięcia
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Ryzyko złamań
Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
