MPL 25x2x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020509
Długość
25 mm [±0,1 mm]
Szerokość
2 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.33 kg / 22.82 N
Indukcja magnetyczna
558.90 mT / 5589 Gs
Powłoka
[NiCuNi] nikiel
0.713 ZŁ z VAT / szt. + cena za transport
0.580 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie napisz przez
formularz kontaktowy
na stronie kontaktowej.
Właściwości a także formę magnesów zweryfikujesz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MPL 25x2x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x2x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020509 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 2 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.33 kg / 22.82 N |
| Indukcja magnetyczna ~ ? | 558.90 mT / 5589 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Przedstawione wartości stanowią wynik analizy matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 25x2x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5574 Gs
557.4 mT
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
średnie ryzyko |
| 1 mm |
2599 Gs
259.9 mT
|
0.51 kg / 1.12 lbs
506.6 g / 5.0 N
|
niskie ryzyko |
| 2 mm |
1392 Gs
139.2 mT
|
0.15 kg / 0.32 lbs
145.3 g / 1.4 N
|
niskie ryzyko |
| 3 mm |
879 Gs
87.9 mT
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
niskie ryzyko |
| 5 mm |
454 Gs
45.4 mT
|
0.02 kg / 0.03 lbs
15.5 g / 0.2 N
|
niskie ryzyko |
| 10 mm |
155 Gs
15.5 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
72 Gs
7.2 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
39 Gs
3.9 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 25x2x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 25x2x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.54 lbs
699.0 g / 6.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 25x2x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 lbs
582.5 g / 5.7 N
|
| 2 mm |
|
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
|
| 3 mm |
|
1.75 kg / 3.85 lbs
1747.5 g / 17.1 N
|
| 5 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 10 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 11 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
| 12 mm |
|
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 25x2x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
|
OK |
| 40 °C | -2.2% |
2.28 kg / 5.02 lbs
2278.7 g / 22.4 N
|
OK |
| 60 °C | -4.4% |
2.23 kg / 4.91 lbs
2227.5 g / 21.9 N
|
OK |
| 80 °C | -6.6% |
2.18 kg / 4.80 lbs
2176.2 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.66 kg / 3.66 lbs
1659.0 g / 16.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 25x2x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.58 kg / 21.12 lbs
5 924 Gs
|
1.44 kg / 3.17 lbs
1437 g / 14.1 N
|
N/A |
| 1 mm |
4.52 kg / 9.97 lbs
7 659 Gs
|
0.68 kg / 1.49 lbs
678 g / 6.7 N
|
4.07 kg / 8.97 lbs
~0 Gs
|
| 2 mm |
2.08 kg / 4.59 lbs
5 198 Gs
|
0.31 kg / 0.69 lbs
312 g / 3.1 N
|
1.87 kg / 4.13 lbs
~0 Gs
|
| 3 mm |
1.06 kg / 2.34 lbs
3 708 Gs
|
0.16 kg / 0.35 lbs
159 g / 1.6 N
|
0.95 kg / 2.10 lbs
~0 Gs
|
| 5 mm |
0.37 kg / 0.81 lbs
2 179 Gs
|
0.05 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.73 lbs
~0 Gs
|
| 10 mm |
0.06 kg / 0.14 lbs
909 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
311 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 25x2x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 25x2x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.47 km/h
(9.02 m/s)
|
0.09 J | |
| 30 mm |
56.21 km/h
(15.61 m/s)
|
0.27 J | |
| 50 mm |
72.57 km/h
(20.16 m/s)
|
0.46 J | |
| 100 mm |
102.63 km/h
(28.51 m/s)
|
0.91 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 25x2x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 25x2x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 608 Mx | 26.1 µWb |
| Współczynnik Pc | 0.76 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 25x2x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.33 kg | Standard |
| Woda (dno rzeki) |
2.67 kg
(+0.34 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- charakteryzującej się gładkością
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Masywność podłoża – zbyt cienka płyta nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Niklowa powłoka a alergia
Pewna grupa użytkowników wykazuje alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może wywołać silną reakcję alergiczną. Sugerujemy stosowanie rękawic bezlateksowych.
Uwaga: zadławienie
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Zasady obsługi
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Łatwopalność
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Maksymalna temperatura
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Nie zbliżaj do komputera
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Poważne obrażenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
