MPL 25x2x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020509
Długość
25 mm [±0,1 mm]
Szerokość
2 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.33 kg / 22.82 N
Indukcja magnetyczna
558.90 mT / 5589 Gs
Powłoka
[NiCuNi] nikiel
0.713 ZŁ z VAT / szt. + cena za transport
0.580 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie napisz przez
formularz
na naszej stronie.
Siłę a także kształt magnesów neodymowych sprawdzisz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane produktu - MPL 25x2x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x2x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020509 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 2 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.33 kg / 22.82 N |
| Indukcja magnetyczna ~ ? | 558.90 mT / 5589 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Niniejsze wartości stanowią wynik analizy fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 25x2x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5574 Gs
557.4 mT
|
2.33 kg / 2330.0 g
22.9 N
|
średnie ryzyko |
| 1 mm |
2599 Gs
259.9 mT
|
0.51 kg / 506.6 g
5.0 N
|
niskie ryzyko |
| 2 mm |
1392 Gs
139.2 mT
|
0.15 kg / 145.3 g
1.4 N
|
niskie ryzyko |
| 3 mm |
879 Gs
87.9 mT
|
0.06 kg / 58.0 g
0.6 N
|
niskie ryzyko |
| 5 mm |
454 Gs
45.4 mT
|
0.02 kg / 15.5 g
0.2 N
|
niskie ryzyko |
| 10 mm |
155 Gs
15.5 mT
|
0.00 kg / 1.8 g
0.0 N
|
niskie ryzyko |
| 15 mm |
72 Gs
7.2 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
| 20 mm |
39 Gs
3.9 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 25x2x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.47 kg / 466.0 g
4.6 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 102.0 g
1.0 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 25x2x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 699.0 g
6.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.47 kg / 466.0 g
4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 233.0 g
2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.17 kg / 1165.0 g
11.4 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 25x2x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 233.0 g
2.3 N
|
| 1 mm |
|
0.58 kg / 582.5 g
5.7 N
|
| 2 mm |
|
1.17 kg / 1165.0 g
11.4 N
|
| 5 mm |
|
2.33 kg / 2330.0 g
22.9 N
|
| 10 mm |
|
2.33 kg / 2330.0 g
22.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 25x2x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.33 kg / 2330.0 g
22.9 N
|
OK |
| 40 °C | -2.2% |
2.28 kg / 2278.7 g
22.4 N
|
OK |
| 60 °C | -4.4% |
2.23 kg / 2227.5 g
21.9 N
|
OK |
| 80 °C | -6.6% |
2.18 kg / 2176.2 g
21.3 N
|
|
| 100 °C | -28.8% |
1.66 kg / 1659.0 g
16.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 25x2x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.58 kg / 9579 g
94.0 N
5 924 Gs
|
N/A |
| 1 mm |
4.52 kg / 4521 g
44.3 N
7 659 Gs
|
4.07 kg / 4069 g
39.9 N
~0 Gs
|
| 2 mm |
2.08 kg / 2082 g
20.4 N
5 198 Gs
|
1.87 kg / 1874 g
18.4 N
~0 Gs
|
| 3 mm |
1.06 kg / 1059 g
10.4 N
3 708 Gs
|
0.95 kg / 953 g
9.4 N
~0 Gs
|
| 5 mm |
0.37 kg / 366 g
3.6 N
2 179 Gs
|
0.33 kg / 329 g
3.2 N
~0 Gs
|
| 10 mm |
0.06 kg / 64 g
0.6 N
909 Gs
|
0.06 kg / 57 g
0.6 N
~0 Gs
|
| 20 mm |
0.01 kg / 7 g
0.1 N
311 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
46 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 25x2x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 25x2x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.47 km/h
(9.02 m/s)
|
0.09 J | |
| 30 mm |
56.21 km/h
(15.61 m/s)
|
0.27 J | |
| 50 mm |
72.57 km/h
(20.16 m/s)
|
0.46 J | |
| 100 mm |
102.63 km/h
(28.51 m/s)
|
0.91 J |
Tabela 9: Odporność na korozję
MPL 25x2x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 25x2x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 608 Mx | 26.1 µWb |
| Współczynnik Pc | 0.76 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 25x2x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.33 kg | Standard |
| Woda (dno rzeki) |
2.67 kg
(+0.34 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni styku
- przy zerowej szczelinie (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda stal nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Obróbka mechaniczna
Pył generowany podczas obróbki magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Utrata mocy w cieple
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Niszczenie danych
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Uszkodzenia czujników
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Kruchy spiek
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Uwaga: zadławienie
Silne magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko złamań
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
