Silne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Mamy w ofercie szeroki wybór magnesów o różnych kształtach i wymiarach. To najlepszy wybór do zastosowań domowych, warsztatu oraz zadań przemysłowych. Sprawdź naszą ofertę z szybką wysyłką.

poznaj pełną ofertę

Zestawy do magnet fishing (hobbystów)

Odkryj pasję z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz mocne linki sprawdzą się w trudnych warunkach wodnych.

wybierz zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Profesjonalne rozwiązania do mocowania bezinwazyjnego. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy instalacji lamp, sensorów oraz banerów.

sprawdź dostępne gwinty

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt na zamówienie Wysyłamy za 3-5 dni

MPL 25x2x6 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020509

Długość

25 mm [±0,1 mm]

Szerokość

2 mm [±0,1 mm]

Wysokość

6 mm [±0,1 mm]

Waga

2.25 g

Kierunek magnesowania

↑ osiowy

Udźwig

2.33 kg / 22.82 N

Indukcja magnetyczna

558.90 mT / 5589 Gs

Powłoka

[NiCuNi] nikiel

0.713 z VAT / szt. + cena za transport

0.580 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.580 ZŁ
0.713 ZŁ
cena od 1100 szt.
0.545 ZŁ
0.671 ZŁ
cena od 4400 szt.
0.510 ZŁ
0.628 ZŁ
Chcesz lepszą cenę?

Zadzwoń już teraz +48 22 499 98 98 alternatywnie pisz przez nasz formularz online w sekcji kontakt.
Parametry oraz kształt magnesu neodymowego testujesz u nas w kalkulatorze mocy.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Szczegóły techniczne - MPL 25x2x6 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 25x2x6 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020509
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 25 mm [±0,1 mm]
Szerokość 2 mm [±0,1 mm]
Wysokość 6 mm [±0,1 mm]
Waga 2.25 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 2.33 kg / 22.82 N
Indukcja magnetyczna ~ ? 558.90 mT / 5589 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 25x2x6 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu neodymowego - raport

Niniejsze wartości stanowią bezpośredni efekt analizy matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te dane jako pomoc pomocniczą dla projektantów.

Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 25x2x6 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 5574 Gs
557.4 mT
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
uwaga
1 mm 2599 Gs
259.9 mT
0.51 kg / 1.12 lbs
506.6 g / 5.0 N
niskie ryzyko
2 mm 1392 Gs
139.2 mT
0.15 kg / 0.32 lbs
145.3 g / 1.4 N
niskie ryzyko
3 mm 879 Gs
87.9 mT
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
niskie ryzyko
5 mm 454 Gs
45.4 mT
0.02 kg / 0.03 lbs
15.5 g / 0.2 N
niskie ryzyko
10 mm 155 Gs
15.5 mT
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
niskie ryzyko
15 mm 72 Gs
7.2 mT
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
niskie ryzyko
20 mm 39 Gs
3.9 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
30 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
50 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 25x2x6 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.47 kg / 1.03 lbs
466.0 g / 4.6 N
1 mm Stal (~0.2) 0.10 kg / 0.22 lbs
102.0 g / 1.0 N
2 mm Stal (~0.2) 0.03 kg / 0.07 lbs
30.0 g / 0.3 N
3 mm Stal (~0.2) 0.01 kg / 0.03 lbs
12.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 25x2x6 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.70 kg / 1.54 lbs
699.0 g / 6.9 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.47 kg / 1.03 lbs
466.0 g / 4.6 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 25x2x6 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.23 kg / 0.51 lbs
233.0 g / 2.3 N
1 mm
25%
0.58 kg / 1.28 lbs
582.5 g / 5.7 N
2 mm
50%
1.17 kg / 2.57 lbs
1165.0 g / 11.4 N
3 mm
75%
1.75 kg / 3.85 lbs
1747.5 g / 17.1 N
5 mm
100%
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
10 mm
100%
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
11 mm
100%
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
12 mm
100%
2.33 kg / 5.14 lbs
2330.0 g / 22.9 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 25x2x6 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 2.33 kg / 5.14 lbs
2330.0 g / 22.9 N
OK
40 °C -2.2% 2.28 kg / 5.02 lbs
2278.7 g / 22.4 N
OK
60 °C -4.4% 2.23 kg / 4.91 lbs
2227.5 g / 21.9 N
OK
80 °C -6.6% 2.18 kg / 4.80 lbs
2176.2 g / 21.3 N
100 °C -28.8% 1.66 kg / 3.66 lbs
1659.0 g / 16.3 N

Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 25x2x6 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 9.58 kg / 21.12 lbs
5 924 Gs
1.44 kg / 3.17 lbs
1437 g / 14.1 N
N/A
1 mm 4.52 kg / 9.97 lbs
7 659 Gs
0.68 kg / 1.49 lbs
678 g / 6.7 N
4.07 kg / 8.97 lbs
~0 Gs
2 mm 2.08 kg / 4.59 lbs
5 198 Gs
0.31 kg / 0.69 lbs
312 g / 3.1 N
1.87 kg / 4.13 lbs
~0 Gs
3 mm 1.06 kg / 2.34 lbs
3 708 Gs
0.16 kg / 0.35 lbs
159 g / 1.6 N
0.95 kg / 2.10 lbs
~0 Gs
5 mm 0.37 kg / 0.81 lbs
2 179 Gs
0.05 kg / 0.12 lbs
55 g / 0.5 N
0.33 kg / 0.73 lbs
~0 Gs
10 mm 0.06 kg / 0.14 lbs
909 Gs
0.01 kg / 0.02 lbs
10 g / 0.1 N
0.06 kg / 0.13 lbs
~0 Gs
20 mm 0.01 kg / 0.02 lbs
311 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
46 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
29 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
20 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
14 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 25x2x6 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 5.0 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.0 cm
Immobilizer 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 25x2x6 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 32.47 km/h
(9.02 m/s)
0.09 J
30 mm 56.21 km/h
(15.61 m/s)
0.27 J
50 mm 72.57 km/h
(20.16 m/s)
0.46 J
100 mm 102.63 km/h
(28.51 m/s)
0.91 J

Tabela 9: Odporność na korozję
MPL 25x2x6 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MPL 25x2x6 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 608 Mx 26.1 µWb
Współczynnik Pc 0.76 Wysoki (Stabilny)

Tabela 11: Fizyka poszukiwań podwodnych
MPL 25x2x6 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 2.33 kg Standard
Woda (dno rzeki) 2.67 kg
(+0.34 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Ześlizg (ściana)

*Ważne: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły prostopadłej.

2. Grubość podłoża

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.

3. Praca w cieple

*W klasie N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020509-2026
Kalkulator miar
Siła oderwania

Pole magnetyczne

Inne produkty

Komponent MPL 25x2x6 / N38 cechuje się płaskim kształtem oraz przemysłową siłą przyciągania, dzięki czemu jest to rozwiązanie doskonałe do budowy separatorów i maszyn. Ten blok magnetyczny o sile 22.82 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Ponadto, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Kluczem do sukcesu jest przesunięcie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 25x2x6 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Magnesy płytkowe MPL 25x2x6 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak separatory magnetyczne oraz silniki liniowe. Dzięki płaskiej powierzchni i dużej sile (ok. 2.33 kg), są idealne jako ukryte zamki w meblarstwie oraz elementy montażowe w automatyce. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem oczyścić i odtłuścić powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: 25 mm (długość), 2 mm (szerokość) i 6 mm (grubość). Jest to blok magnetyczny o gabarytach 25x2x6 mm i masie własnej 2.25 g, gotowy do pracy w temperaturze do 80°C. Produkt spełnia normy dla magnesów klasy N38.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Plusy

Oprócz ogromną energią, magnesy typu NdFeB oferują szereg innych zalet::
  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
  • Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
  • Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
  • Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
  • Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
  • Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.

Wady

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
  • Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Analiza siły trzymania

Najlepsza nośność magnesu w idealnych parametrachod czego zależy?

Deklarowana siła magnesu reprezentuje maksymalnych osiągów, zarejestrowanej w idealnych warunkach testowych, czyli:
  • na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
  • posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
  • z płaszczyzną idealnie równą
  • w warunkach braku dystansu (powierzchnia do powierzchni)
  • dla siły działającej pod kątem prostym (w osi magnesu)
  • w temp. ok. 20°C

Wpływ czynników na nośność magnesu w praktyce

Trzeba mieć na uwadze, że udźwig roboczy może być niższe zależnie od następujących czynników, zaczynając od najistotniejszych:
  • Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
  • Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
  • Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
  • Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
  • Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Udźwig określano używając gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje udźwig.

Instrukcja bezpiecznej obsługi magnesów
Siła neodymu

Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.

Uczulenie na powłokę

Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.

Kompas i GPS

Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.

Implanty kardiologiczne

Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może zakłócić działanie implantu.

Nie dawać dzieciom

Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.

Zagrożenie dla elektroniki

Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.

Nie wierć w magnesach

Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.

Przegrzanie magnesu

Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).

Kruchość materiału

Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.

Poważne obrażenia

Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Zachowaj ostrożność! Szczegółowe omówienie o ryzyku w artykule: Niebezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98