MP 25x12.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030342
GTIN/EAN: 5906301812289
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
13.81 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.98 kg / 58.67 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
6.20 ZŁ z VAT / szt. + cena za transport
5.04 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub skontaktuj się za pomocą
formularz
w sekcji kontakt.
Właściwości a także budowę magnesu neodymowego testujesz dzięki naszemu
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MP 25x12.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x12.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030342 |
| GTIN/EAN | 5906301812289 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 13.81 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.98 kg / 58.67 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt kalkulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MP 25x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
średnie ryzyko |
| 1 mm |
5310 Gs
531.0 mT
|
5.05 kg / 11.14 lbs
5051.8 g / 49.6 N
|
średnie ryzyko |
| 2 mm |
4846 Gs
484.6 mT
|
4.21 kg / 9.27 lbs
4206.8 g / 41.3 N
|
średnie ryzyko |
| 3 mm |
4397 Gs
439.7 mT
|
3.46 kg / 7.64 lbs
3464.5 g / 34.0 N
|
średnie ryzyko |
| 5 mm |
3576 Gs
357.6 mT
|
2.29 kg / 5.05 lbs
2291.1 g / 22.5 N
|
średnie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
0.77 kg / 1.70 lbs
769.7 g / 7.6 N
|
niskie ryzyko |
| 15 mm |
1231 Gs
123.1 mT
|
0.27 kg / 0.60 lbs
271.6 g / 2.7 N
|
niskie ryzyko |
| 20 mm |
773 Gs
77.3 mT
|
0.11 kg / 0.24 lbs
106.9 g / 1.0 N
|
niskie ryzyko |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 0.05 lbs
22.7 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 25x12.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.20 kg / 2.64 lbs
1196.0 g / 11.7 N
|
| 1 mm | Stal (~0.2) |
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 2 mm | Stal (~0.2) |
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 3 mm | Stal (~0.2) |
0.69 kg / 1.53 lbs
692.0 g / 6.8 N
|
| 5 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
| 10 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 25x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.79 kg / 3.96 lbs
1794.0 g / 17.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.20 kg / 2.64 lbs
1196.0 g / 11.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.60 kg / 1.32 lbs
598.0 g / 5.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.99 kg / 6.59 lbs
2990.0 g / 29.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 25x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.60 kg / 1.32 lbs
598.0 g / 5.9 N
|
| 1 mm |
|
1.50 kg / 3.30 lbs
1495.0 g / 14.7 N
|
| 2 mm |
|
2.99 kg / 6.59 lbs
2990.0 g / 29.3 N
|
| 3 mm |
|
4.49 kg / 9.89 lbs
4485.0 g / 44.0 N
|
| 5 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
| 10 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
| 11 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
| 12 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MP 25x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
OK |
| 40 °C | -2.2% |
5.85 kg / 12.89 lbs
5848.4 g / 57.4 N
|
OK |
| 60 °C | -4.4% |
5.72 kg / 12.60 lbs
5716.9 g / 56.1 N
|
OK |
| 80 °C | -6.6% |
5.59 kg / 12.31 lbs
5585.3 g / 54.8 N
|
|
| 100 °C | -28.8% |
4.26 kg / 9.39 lbs
4257.8 g / 41.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 25x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
82.42 kg / 181.72 lbs
6 082 Gs
|
12.36 kg / 27.26 lbs
12364 g / 121.3 N
|
N/A |
| 1 mm |
75.95 kg / 167.44 lbs
11 091 Gs
|
11.39 kg / 25.12 lbs
11392 g / 111.8 N
|
68.35 kg / 150.69 lbs
~0 Gs
|
| 2 mm |
69.63 kg / 153.51 lbs
10 620 Gs
|
10.44 kg / 23.03 lbs
10445 g / 102.5 N
|
62.67 kg / 138.16 lbs
~0 Gs
|
| 3 mm |
63.64 kg / 140.29 lbs
10 153 Gs
|
9.55 kg / 21.04 lbs
9545 g / 93.6 N
|
57.27 kg / 126.26 lbs
~0 Gs
|
| 5 mm |
52.69 kg / 116.16 lbs
9 238 Gs
|
7.90 kg / 17.42 lbs
7903 g / 77.5 N
|
47.42 kg / 104.54 lbs
~0 Gs
|
| 10 mm |
31.58 kg / 69.62 lbs
7 152 Gs
|
4.74 kg / 10.44 lbs
4737 g / 46.5 N
|
28.42 kg / 62.66 lbs
~0 Gs
|
| 20 mm |
10.61 kg / 23.39 lbs
4 145 Gs
|
1.59 kg / 3.51 lbs
1591 g / 15.6 N
|
9.55 kg / 21.05 lbs
~0 Gs
|
| 50 mm |
0.65 kg / 1.43 lbs
1 024 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.69 lbs
712 Gs
|
0.05 kg / 0.10 lbs
47 g / 0.5 N
|
0.28 kg / 0.62 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 25x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MP 25x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.61 km/h
(6.28 m/s)
|
0.27 J | |
| 30 mm |
36.44 km/h
(10.12 m/s)
|
0.71 J | |
| 50 mm |
46.94 km/h
(13.04 m/s)
|
1.17 J | |
| 100 mm |
66.37 km/h
(18.43 m/s)
|
2.35 J |
Tabela 9: Odporność na korozję
MP 25x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 25x12.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 536 Mx | 245.4 µWb |
| Współczynnik Pc | 1.03 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.98 kg | Standard |
| Woda (dno rzeki) |
6.85 kg
(+0.87 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.03
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Wady
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- z użyciem blachy ze miękkiej stali, która służy jako idealny przewodnik strumienia
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans – obecność ciała obcego (farba, brud, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje udźwig.
Bezpieczna praca z magnesami neodymowymi
Nie zbliżaj do komputera
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Zakaz zabawy
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Kompas i GPS
Silne pole magnetyczne zakłóca funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Dla uczulonych
Niektóre osoby wykazuje uczulenie na nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może skutkować silną reakcję alergiczną. Rekomendujemy używanie rękawiczek ochronnych.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
