MP 25x12.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030342
GTIN/EAN: 5906301812289
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
13.81 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.98 kg / 58.67 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
6.20 ZŁ z VAT / szt. + cena za transport
5.04 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie pisz korzystając z
formularz zgłoszeniowy
na naszej stronie.
Moc i kształt magnesów skontrolujesz dzięki naszemu
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MP 25x12.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x12.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030342 |
| GTIN/EAN | 5906301812289 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 13.81 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.98 kg / 58.67 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe wartości stanowią bezpośredni efekt symulacji matematycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MP 25x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
uwaga |
| 1 mm |
5310 Gs
531.0 mT
|
5.05 kg / 11.14 lbs
5051.8 g / 49.6 N
|
uwaga |
| 2 mm |
4846 Gs
484.6 mT
|
4.21 kg / 9.27 lbs
4206.8 g / 41.3 N
|
uwaga |
| 3 mm |
4397 Gs
439.7 mT
|
3.46 kg / 7.64 lbs
3464.5 g / 34.0 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
2.29 kg / 5.05 lbs
2291.1 g / 22.5 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
0.77 kg / 1.70 lbs
769.7 g / 7.6 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.27 kg / 0.60 lbs
271.6 g / 2.7 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.11 kg / 0.24 lbs
106.9 g / 1.0 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 0.05 lbs
22.7 g / 0.2 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MP 25x12.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.20 kg / 2.64 lbs
1196.0 g / 11.7 N
|
| 1 mm | Stal (~0.2) |
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 2 mm | Stal (~0.2) |
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 3 mm | Stal (~0.2) |
0.69 kg / 1.53 lbs
692.0 g / 6.8 N
|
| 5 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
| 10 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 25x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.79 kg / 3.96 lbs
1794.0 g / 17.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.20 kg / 2.64 lbs
1196.0 g / 11.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.60 kg / 1.32 lbs
598.0 g / 5.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.99 kg / 6.59 lbs
2990.0 g / 29.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 25x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.60 kg / 1.32 lbs
598.0 g / 5.9 N
|
| 1 mm |
|
1.50 kg / 3.30 lbs
1495.0 g / 14.7 N
|
| 2 mm |
|
2.99 kg / 6.59 lbs
2990.0 g / 29.3 N
|
| 3 mm |
|
4.49 kg / 9.89 lbs
4485.0 g / 44.0 N
|
| 5 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
| 10 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
| 11 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
| 12 mm |
|
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MP 25x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.98 kg / 13.18 lbs
5980.0 g / 58.7 N
|
OK |
| 40 °C | -2.2% |
5.85 kg / 12.89 lbs
5848.4 g / 57.4 N
|
OK |
| 60 °C | -4.4% |
5.72 kg / 12.60 lbs
5716.9 g / 56.1 N
|
OK |
| 80 °C | -6.6% |
5.59 kg / 12.31 lbs
5585.3 g / 54.8 N
|
|
| 100 °C | -28.8% |
4.26 kg / 9.39 lbs
4257.8 g / 41.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 25x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
82.42 kg / 181.72 lbs
6 082 Gs
|
12.36 kg / 27.26 lbs
12364 g / 121.3 N
|
N/A |
| 1 mm |
75.95 kg / 167.44 lbs
11 091 Gs
|
11.39 kg / 25.12 lbs
11392 g / 111.8 N
|
68.35 kg / 150.69 lbs
~0 Gs
|
| 2 mm |
69.63 kg / 153.51 lbs
10 620 Gs
|
10.44 kg / 23.03 lbs
10445 g / 102.5 N
|
62.67 kg / 138.16 lbs
~0 Gs
|
| 3 mm |
63.64 kg / 140.29 lbs
10 153 Gs
|
9.55 kg / 21.04 lbs
9545 g / 93.6 N
|
57.27 kg / 126.26 lbs
~0 Gs
|
| 5 mm |
52.69 kg / 116.16 lbs
9 238 Gs
|
7.90 kg / 17.42 lbs
7903 g / 77.5 N
|
47.42 kg / 104.54 lbs
~0 Gs
|
| 10 mm |
31.58 kg / 69.62 lbs
7 152 Gs
|
4.74 kg / 10.44 lbs
4737 g / 46.5 N
|
28.42 kg / 62.66 lbs
~0 Gs
|
| 20 mm |
10.61 kg / 23.39 lbs
4 145 Gs
|
1.59 kg / 3.51 lbs
1591 g / 15.6 N
|
9.55 kg / 21.05 lbs
~0 Gs
|
| 50 mm |
0.65 kg / 1.43 lbs
1 024 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.69 lbs
712 Gs
|
0.05 kg / 0.10 lbs
47 g / 0.5 N
|
0.28 kg / 0.62 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 25x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 25x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.61 km/h
(6.28 m/s)
|
0.27 J | |
| 30 mm |
36.44 km/h
(10.12 m/s)
|
0.71 J | |
| 50 mm |
46.94 km/h
(13.04 m/s)
|
1.17 J | |
| 100 mm |
66.37 km/h
(18.43 m/s)
|
2.35 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 25x12.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 536 Mx | 245.4 µWb |
| Współczynnik Pc | 1.03 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.98 kg | Standard |
| Woda (dno rzeki) |
6.85 kg
(+0.87 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.03
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Odstęp (pomiędzy magnesem a metalem), bowiem nawet mikroskopijna odległość (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Chronić przed dziećmi
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Kruchość materiału
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Limity termiczne
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Ogromna siła
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Zagrożenie życia
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Bezpieczny dystans
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
