MW 7x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010099
GTIN: 5906301810988
Średnica Ø
7 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.58 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.99 kg / 9.76 N
Indukcja magnetyczna
307.23 mT / 3072 Gs
Powłoka
[NiCuNi] nikiel
0.381 ZŁ z VAT / szt. + cena za transport
0.310 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz jaki magnes kupić?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz poprzez
nasz formularz online
na stronie kontakt.
Parametry i kształt magnesów zobaczysz w naszym
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 7x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 7x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010099 |
| GTIN | 5906301810988 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 7 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.58 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.99 kg / 9.76 N |
| Indukcja magnetyczna ~ ? | 307.23 mT / 3072 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Niniejsze wartości stanowią bezpośredni efekt analizy fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
MW 7x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3070 Gs
307.0 mT
|
0.99 kg / 990.0 g
9.7 N
|
bezpieczny |
| 1 mm |
2332 Gs
233.2 mT
|
0.57 kg / 571.1 g
5.6 N
|
bezpieczny |
| 2 mm |
1590 Gs
159.0 mT
|
0.27 kg / 265.5 g
2.6 N
|
bezpieczny |
| 3 mm |
1044 Gs
104.4 mT
|
0.11 kg / 114.6 g
1.1 N
|
bezpieczny |
| 5 mm |
466 Gs
46.6 mT
|
0.02 kg / 22.8 g
0.2 N
|
bezpieczny |
| 10 mm |
100 Gs
10.0 mT
|
0.00 kg / 1.1 g
0.0 N
|
bezpieczny |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 20 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 7x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.20 kg / 198.0 g
1.9 N
|
| 1 mm | Stal (~0.2) |
0.11 kg / 114.0 g
1.1 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 7x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.30 kg / 297.0 g
2.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.20 kg / 198.0 g
1.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 99.0 g
1.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.50 kg / 495.0 g
4.9 N
|
MW 7x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 99.0 g
1.0 N
|
| 1 mm |
|
0.25 kg / 247.5 g
2.4 N
|
| 2 mm |
|
0.50 kg / 495.0 g
4.9 N
|
| 5 mm |
|
0.99 kg / 990.0 g
9.7 N
|
| 10 mm |
|
0.99 kg / 990.0 g
9.7 N
|
MW 7x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.99 kg / 990.0 g
9.7 N
|
OK |
| 40 °C | -2.2% |
0.97 kg / 968.2 g
9.5 N
|
OK |
| 60 °C | -4.4% |
0.95 kg / 946.4 g
9.3 N
|
|
| 80 °C | -6.6% |
0.92 kg / 924.7 g
9.1 N
|
|
| 100 °C | -28.8% |
0.70 kg / 704.9 g
6.9 N
|
MW 7x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.24 kg / 2236 g
21.9 N
4 653 Gs
|
N/A |
| 1 mm |
1.76 kg / 1764 g
17.3 N
5 454 Gs
|
1.59 kg / 1588 g
15.6 N
~0 Gs
|
| 2 mm |
1.29 kg / 1290 g
12.7 N
4 663 Gs
|
1.16 kg / 1161 g
11.4 N
~0 Gs
|
| 3 mm |
0.89 kg / 895 g
8.8 N
3 884 Gs
|
0.81 kg / 805 g
7.9 N
~0 Gs
|
| 5 mm |
0.40 kg / 395 g
3.9 N
2 581 Gs
|
0.36 kg / 356 g
3.5 N
~0 Gs
|
| 10 mm |
0.05 kg / 52 g
0.5 N
932 Gs
|
0.05 kg / 46 g
0.5 N
~0 Gs
|
| 20 mm |
0.00 kg / 2 g
0.0 N
200 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
17 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 7x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 7x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
41.69 km/h
(11.58 m/s)
|
0.04 J | |
| 30 mm |
72.17 km/h
(20.05 m/s)
|
0.12 J | |
| 50 mm |
93.17 km/h
(25.88 m/s)
|
0.19 J | |
| 100 mm |
131.76 km/h
(36.60 m/s)
|
0.39 J |
MW 7x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 7x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 284 Mx | 12.8 µWb |
| Współczynnik Pc | 0.39 | Niski (Płaski) |
MW 7x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.99 kg | Standard |
| Woda (dno rzeki) |
1.13 kg
(+0.14 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
Sprawdź inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi jedynie ~1% (teoretycznie).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o wypolerowanej powierzchni styku
- przy bezpośrednim styku (bez zanieczyszczeń)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig mierzono używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
To nie jest zabawka
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Podatność na pękanie
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Reakcje alergiczne
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Zakaz obróbki
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Bezpieczny dystans
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
