MW 7x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010099
GTIN/EAN: 5906301810988
Średnica Ø
7 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.58 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.99 kg / 9.76 N
Indukcja magnetyczna
307.23 mT / 3072 Gs
Powłoka
[NiCuNi] nikiel
0.381 ZŁ z VAT / szt. + cena za transport
0.310 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
formularz kontaktowy
na stronie kontaktowej.
Udźwig i formę magnesów zweryfikujesz u nas w
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja - MW 7x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 7x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010099 |
| GTIN/EAN | 5906301810988 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 7 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.58 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.99 kg / 9.76 N |
| Indukcja magnetyczna ~ ? | 307.23 mT / 3072 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią bezpośredni efekt symulacji matematycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 7x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3070 Gs
307.0 mT
|
0.99 kg / 990.0 g
9.7 N
|
niskie ryzyko |
| 1 mm |
2332 Gs
233.2 mT
|
0.57 kg / 571.1 g
5.6 N
|
niskie ryzyko |
| 2 mm |
1590 Gs
159.0 mT
|
0.27 kg / 265.5 g
2.6 N
|
niskie ryzyko |
| 3 mm |
1044 Gs
104.4 mT
|
0.11 kg / 114.6 g
1.1 N
|
niskie ryzyko |
| 5 mm |
466 Gs
46.6 mT
|
0.02 kg / 22.8 g
0.2 N
|
niskie ryzyko |
| 10 mm |
100 Gs
10.0 mT
|
0.00 kg / 1.1 g
0.0 N
|
niskie ryzyko |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 20 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 7x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.20 kg / 198.0 g
1.9 N
|
| 1 mm | Stal (~0.2) |
0.11 kg / 114.0 g
1.1 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 7x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.30 kg / 297.0 g
2.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.20 kg / 198.0 g
1.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 99.0 g
1.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.50 kg / 495.0 g
4.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 7x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 99.0 g
1.0 N
|
| 1 mm |
|
0.25 kg / 247.5 g
2.4 N
|
| 2 mm |
|
0.50 kg / 495.0 g
4.9 N
|
| 5 mm |
|
0.99 kg / 990.0 g
9.7 N
|
| 10 mm |
|
0.99 kg / 990.0 g
9.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 7x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.99 kg / 990.0 g
9.7 N
|
OK |
| 40 °C | -2.2% |
0.97 kg / 968.2 g
9.5 N
|
OK |
| 60 °C | -4.4% |
0.95 kg / 946.4 g
9.3 N
|
|
| 80 °C | -6.6% |
0.92 kg / 924.7 g
9.1 N
|
|
| 100 °C | -28.8% |
0.70 kg / 704.9 g
6.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 7x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.24 kg / 2236 g
21.9 N
4 653 Gs
|
N/A |
| 1 mm |
1.76 kg / 1764 g
17.3 N
5 454 Gs
|
1.59 kg / 1588 g
15.6 N
~0 Gs
|
| 2 mm |
1.29 kg / 1290 g
12.7 N
4 663 Gs
|
1.16 kg / 1161 g
11.4 N
~0 Gs
|
| 3 mm |
0.89 kg / 895 g
8.8 N
3 884 Gs
|
0.81 kg / 805 g
7.9 N
~0 Gs
|
| 5 mm |
0.40 kg / 395 g
3.9 N
2 581 Gs
|
0.36 kg / 356 g
3.5 N
~0 Gs
|
| 10 mm |
0.05 kg / 52 g
0.5 N
932 Gs
|
0.05 kg / 46 g
0.5 N
~0 Gs
|
| 20 mm |
0.00 kg / 2 g
0.0 N
200 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
17 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 7x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 7x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
41.69 km/h
(11.58 m/s)
|
0.04 J | |
| 30 mm |
72.17 km/h
(20.05 m/s)
|
0.12 J | |
| 50 mm |
93.17 km/h
(25.88 m/s)
|
0.19 J | |
| 100 mm |
131.76 km/h
(36.60 m/s)
|
0.39 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 7x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 7x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 284 Mx | 12.8 µWb |
| Współczynnik Pc | 0.39 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 7x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.99 kg | Standard |
| Woda (dno rzeki) |
1.13 kg
(+0.14 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.39
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o przekroju przynajmniej 10 mm
- o wypolerowanej powierzchni styku
- przy bezpośrednim styku (brak farby)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Zagrożenie fizyczne
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.
Interferencja medyczna
Osoby z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Kompas i GPS
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Temperatura pracy
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Uczulenie na powłokę
Część populacji posiada alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Wskazane jest stosowanie rękawic bezlateksowych.
Siła neodymu
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
