MW 70x40 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010097
GTIN/EAN: 5906301810964
Średnica Ø
70 mm [±0,1 mm]
Wysokość
40 mm [±0,1 mm]
Waga
1154.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
164.24 kg / 1611.16 N
Indukcja magnetyczna
466.52 mT / 4665 Gs
Powłoka
[NiCuNi] nikiel
395.40 ZŁ z VAT / szt. + cena za transport
321.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub pisz za pomocą
formularz
przez naszą stronę.
Moc i wygląd elementów magnetycznych sprawdzisz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 70x40 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x40 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010097 |
| GTIN/EAN | 5906301810964 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 40 mm [±0,1 mm] |
| Waga | 1154.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 164.24 kg / 1611.16 N |
| Indukcja magnetyczna ~ ? | 466.52 mT / 4665 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Niniejsze dane są wynik symulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MW 70x40 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4665 Gs
466.5 mT
|
164.24 kg / 362.09 lbs
164240.0 g / 1611.2 N
|
niebezpieczny! |
| 1 mm |
4538 Gs
453.8 mT
|
155.47 kg / 342.75 lbs
155467.9 g / 1525.1 N
|
niebezpieczny! |
| 2 mm |
4409 Gs
440.9 mT
|
146.74 kg / 323.52 lbs
146744.5 g / 1439.6 N
|
niebezpieczny! |
| 3 mm |
4279 Gs
427.9 mT
|
138.20 kg / 304.68 lbs
138201.8 g / 1355.8 N
|
niebezpieczny! |
| 5 mm |
4017 Gs
401.7 mT
|
121.81 kg / 268.54 lbs
121806.5 g / 1194.9 N
|
niebezpieczny! |
| 10 mm |
3376 Gs
337.6 mT
|
86.03 kg / 189.65 lbs
86025.3 g / 843.9 N
|
niebezpieczny! |
| 15 mm |
2788 Gs
278.8 mT
|
58.69 kg / 129.38 lbs
58686.8 g / 575.7 N
|
niebezpieczny! |
| 20 mm |
2279 Gs
227.9 mT
|
39.22 kg / 86.46 lbs
39215.6 g / 384.7 N
|
niebezpieczny! |
| 30 mm |
1511 Gs
151.1 mT
|
17.22 kg / 37.97 lbs
17222.5 g / 169.0 N
|
niebezpieczny! |
| 50 mm |
699 Gs
69.9 mT
|
3.69 kg / 8.13 lbs
3690.0 g / 36.2 N
|
średnie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 70x40 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
32.85 kg / 72.42 lbs
32848.0 g / 322.2 N
|
| 1 mm | Stal (~0.2) |
31.09 kg / 68.55 lbs
31094.0 g / 305.0 N
|
| 2 mm | Stal (~0.2) |
29.35 kg / 64.70 lbs
29348.0 g / 287.9 N
|
| 3 mm | Stal (~0.2) |
27.64 kg / 60.94 lbs
27640.0 g / 271.1 N
|
| 5 mm | Stal (~0.2) |
24.36 kg / 53.71 lbs
24362.0 g / 239.0 N
|
| 10 mm | Stal (~0.2) |
17.21 kg / 37.93 lbs
17206.0 g / 168.8 N
|
| 15 mm | Stal (~0.2) |
11.74 kg / 25.88 lbs
11738.0 g / 115.1 N
|
| 20 mm | Stal (~0.2) |
7.84 kg / 17.29 lbs
7844.0 g / 76.9 N
|
| 30 mm | Stal (~0.2) |
3.44 kg / 7.59 lbs
3444.0 g / 33.8 N
|
| 50 mm | Stal (~0.2) |
0.74 kg / 1.63 lbs
738.0 g / 7.2 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 70x40 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
49.27 kg / 108.63 lbs
49272.0 g / 483.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
32.85 kg / 72.42 lbs
32848.0 g / 322.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.42 kg / 36.21 lbs
16424.0 g / 161.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
82.12 kg / 181.04 lbs
82120.0 g / 805.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 70x40 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.47 kg / 12.07 lbs
5474.7 g / 53.7 N
|
| 1 mm |
|
13.69 kg / 30.17 lbs
13686.7 g / 134.3 N
|
| 2 mm |
|
27.37 kg / 60.35 lbs
27373.3 g / 268.5 N
|
| 3 mm |
|
41.06 kg / 90.52 lbs
41060.0 g / 402.8 N
|
| 5 mm |
|
68.43 kg / 150.87 lbs
68433.3 g / 671.3 N
|
| 10 mm |
|
136.87 kg / 301.74 lbs
136866.7 g / 1342.7 N
|
| 11 mm |
|
150.55 kg / 331.91 lbs
150553.3 g / 1476.9 N
|
| 12 mm |
|
164.24 kg / 362.09 lbs
164240.0 g / 1611.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 70x40 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
164.24 kg / 362.09 lbs
164240.0 g / 1611.2 N
|
OK |
| 40 °C | -2.2% |
160.63 kg / 354.12 lbs
160626.7 g / 1575.7 N
|
OK |
| 60 °C | -4.4% |
157.01 kg / 346.15 lbs
157013.4 g / 1540.3 N
|
OK |
| 80 °C | -6.6% |
153.40 kg / 338.19 lbs
153400.2 g / 1504.9 N
|
|
| 100 °C | -28.8% |
116.94 kg / 257.81 lbs
116938.9 g / 1147.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 70x40 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
516.26 kg / 1138.16 lbs
5 679 Gs
|
77.44 kg / 170.72 lbs
77439 g / 759.7 N
|
N/A |
| 1 mm |
502.57 kg / 1107.98 lbs
9 205 Gs
|
75.39 kg / 166.20 lbs
75385 g / 739.5 N
|
452.31 kg / 997.18 lbs
~0 Gs
|
| 2 mm |
488.69 kg / 1077.37 lbs
9 077 Gs
|
73.30 kg / 161.61 lbs
73303 g / 719.1 N
|
439.82 kg / 969.63 lbs
~0 Gs
|
| 3 mm |
474.91 kg / 1047.01 lbs
8 948 Gs
|
71.24 kg / 157.05 lbs
71237 g / 698.8 N
|
427.42 kg / 942.31 lbs
~0 Gs
|
| 5 mm |
447.76 kg / 987.15 lbs
8 688 Gs
|
67.16 kg / 148.07 lbs
67164 g / 658.9 N
|
402.99 kg / 888.43 lbs
~0 Gs
|
| 10 mm |
382.88 kg / 844.10 lbs
8 034 Gs
|
57.43 kg / 126.62 lbs
57432 g / 563.4 N
|
344.59 kg / 759.69 lbs
~0 Gs
|
| 20 mm |
270.41 kg / 596.14 lbs
6 752 Gs
|
40.56 kg / 89.42 lbs
40561 g / 397.9 N
|
243.37 kg / 536.53 lbs
~0 Gs
|
| 50 mm |
81.66 kg / 180.03 lbs
3 710 Gs
|
12.25 kg / 27.01 lbs
12249 g / 120.2 N
|
73.50 kg / 162.03 lbs
~0 Gs
|
| 60 mm |
54.14 kg / 119.35 lbs
3 021 Gs
|
8.12 kg / 17.90 lbs
8120 g / 79.7 N
|
48.72 kg / 107.41 lbs
~0 Gs
|
| 70 mm |
36.14 kg / 79.69 lbs
2 469 Gs
|
5.42 kg / 11.95 lbs
5422 g / 53.2 N
|
32.53 kg / 71.72 lbs
~0 Gs
|
| 80 mm |
24.40 kg / 53.80 lbs
2 028 Gs
|
3.66 kg / 8.07 lbs
3661 g / 35.9 N
|
21.96 kg / 48.42 lbs
~0 Gs
|
| 90 mm |
16.70 kg / 36.82 lbs
1 678 Gs
|
2.51 kg / 5.52 lbs
2505 g / 24.6 N
|
15.03 kg / 33.14 lbs
~0 Gs
|
| 100 mm |
11.60 kg / 25.57 lbs
1 398 Gs
|
1.74 kg / 3.84 lbs
1740 g / 17.1 N
|
10.44 kg / 23.01 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 70x40 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 37.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 29.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 17.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 70x40 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.47 km/h
(4.30 m/s)
|
10.66 J | |
| 30 mm |
22.16 km/h
(6.15 m/s)
|
21.87 J | |
| 50 mm |
27.27 km/h
(7.58 m/s)
|
33.13 J | |
| 100 mm |
38.07 km/h
(10.57 m/s)
|
64.55 J |
Tabela 9: Parametry powłoki (trwałość)
MW 70x40 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 70x40 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 180 982 Mx | 1809.8 µWb |
| Współczynnik Pc | 0.64 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 70x40 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 164.24 kg | Standard |
| Woda (dno rzeki) |
188.05 kg
(+23.81 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.64
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i sprzętu medycznego.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- o grubości przynajmniej 10 mm
- z płaszczyzną oczyszczoną i gładką
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda blacha nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Trwała utrata siły
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Uczulenie na powłokę
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Uszkodzenia ciała
Duże magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Ryzyko pożaru
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Bezpieczna praca
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Interferencja magnetyczna
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Tylko dla dorosłych
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem dzieci i zwierząt.
