MW 5x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010087
GTIN/EAN: 5906301810865
Średnica Ø
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.84 kg / 8.25 N
Indukcja magnetyczna
475.16 mT / 4752 Gs
Powłoka
[NiCuNi] nikiel
0.283 ZŁ z VAT / szt. + cena za transport
0.230 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Parametry a także budowę magnesów zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry produktu - MW 5x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010087 |
| GTIN/EAN | 5906301810865 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.84 kg / 8.25 N |
| Indukcja magnetyczna ~ ? | 475.16 mT / 4752 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Niniejsze dane stanowią wynik symulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4745 Gs
474.5 mT
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
słaby uchwyt |
| 1 mm |
2955 Gs
295.5 mT
|
0.33 kg / 0.72 lbs
325.8 g / 3.2 N
|
słaby uchwyt |
| 2 mm |
1672 Gs
167.2 mT
|
0.10 kg / 0.23 lbs
104.4 g / 1.0 N
|
słaby uchwyt |
| 3 mm |
960 Gs
96.0 mT
|
0.03 kg / 0.08 lbs
34.4 g / 0.3 N
|
słaby uchwyt |
| 5 mm |
372 Gs
37.2 mT
|
0.01 kg / 0.01 lbs
5.2 g / 0.1 N
|
słaby uchwyt |
| 10 mm |
74 Gs
7.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
25 Gs
2.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 0.56 lbs
252.0 g / 2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 1 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 2 mm |
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 3 mm |
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 5 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 10 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 11 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 12 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
OK |
| 40 °C | -2.2% |
0.82 kg / 1.81 lbs
821.5 g / 8.1 N
|
OK |
| 60 °C | -4.4% |
0.80 kg / 1.77 lbs
803.0 g / 7.9 N
|
OK |
| 80 °C | -6.6% |
0.78 kg / 1.73 lbs
784.6 g / 7.7 N
|
|
| 100 °C | -28.8% |
0.60 kg / 1.32 lbs
598.1 g / 5.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.73 kg / 6.01 lbs
5 700 Gs
|
0.41 kg / 0.90 lbs
409 g / 4.0 N
|
N/A |
| 1 mm |
1.77 kg / 3.91 lbs
7 658 Gs
|
0.27 kg / 0.59 lbs
266 g / 2.6 N
|
1.60 kg / 3.52 lbs
~0 Gs
|
| 2 mm |
1.06 kg / 2.33 lbs
5 910 Gs
|
0.16 kg / 0.35 lbs
159 g / 1.6 N
|
0.95 kg / 2.10 lbs
~0 Gs
|
| 3 mm |
0.60 kg / 1.33 lbs
4 460 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 5 mm |
0.19 kg / 0.42 lbs
2 520 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.17 kg / 0.38 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 lbs
745 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
147 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
44.07 km/h
(12.24 m/s)
|
0.03 J | |
| 30 mm |
76.32 km/h
(21.20 m/s)
|
0.10 J | |
| 50 mm |
98.53 km/h
(27.37 m/s)
|
0.16 J | |
| 100 mm |
139.35 km/h
(38.71 m/s)
|
0.33 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 942 Mx | 9.4 µWb |
| Współczynnik Pc | 0.66 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.84 kg | Standard |
| Woda (dno rzeki) |
0.96 kg
(+0.12 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (NiCuNi, złoto, Ag) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- charakteryzującej się gładkością
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Uszkodzenia czujników
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Uczulenie na powłokę
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Ogromna siła
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Zagrożenie fizyczne
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Chronić przed dziećmi
Te produkty magnetyczne nie służą do zabawy. Połknięcie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Implanty medyczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
