Magnesy neodymowe: moc, której szukasz

Szukasz potężnej mocy w małym rozmiarze? Mamy w ofercie szeroki wybór magnesów o różnych kształtach i wymiarach. To najlepszy wybór do zastosowań domowych, garażu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

poznaj pełną ofertę

Uchwyty do eksploracji dna

Rozpocznij przygodę polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w każdej wodzie.

znajdź zestaw dla siebie

Uchwyty magnetyczne montażowe

Sprawdzone rozwiązania do mocowania bezinwazyjnego. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy instalacji oświetlenia, czujników oraz banerów.

sprawdź zastosowania przemysłowe

📦 Szybka wysyłka: kup do 14:00, wyślemy dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 3 dni

MW 5x3 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010087

GTIN/EAN: 5906301810865

5.00

Średnica Ø

5 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

0.44 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.84 kg / 8.25 N

Indukcja magnetyczna

475.16 mT / 4752 Gs

Powłoka

[NiCuNi] nikiel

0.283 z VAT / szt. + cena za transport

0.230 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.230 ZŁ
0.283 ZŁ
cena od 2700 szt.
0.216 ZŁ
0.266 ZŁ
cena od 10900 szt.
0.202 ZŁ
0.249 ZŁ
Chcesz pogadać o magnesach?

Skontaktuj się z nami telefonicznie +48 22 499 98 98 lub zostaw wiadomość poprzez formularz zapytania na naszej stronie.
Właściwości i kształt magnesów przetestujesz w naszym kalkulatorze mocy.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Dane techniczne - MW 5x3 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 5x3 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010087
GTIN/EAN 5906301810865
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 5 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 0.44 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.84 kg / 8.25 N
Indukcja magnetyczna ~ ? 475.16 mT / 4752 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 5x3 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja techniczna magnesu - raport

Przedstawione wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 5x3 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 4745 Gs
474.5 mT
0.84 kg / 840.0 g
8.2 N
bezpieczny
1 mm 2955 Gs
295.5 mT
0.33 kg / 325.8 g
3.2 N
bezpieczny
2 mm 1672 Gs
167.2 mT
0.10 kg / 104.4 g
1.0 N
bezpieczny
3 mm 960 Gs
96.0 mT
0.03 kg / 34.4 g
0.3 N
bezpieczny
5 mm 372 Gs
37.2 mT
0.01 kg / 5.2 g
0.1 N
bezpieczny
10 mm 74 Gs
7.4 mT
0.00 kg / 0.2 g
0.0 N
bezpieczny
15 mm 25 Gs
2.5 mT
0.00 kg / 0.0 g
0.0 N
bezpieczny
20 mm 12 Gs
1.2 mT
0.00 kg / 0.0 g
0.0 N
bezpieczny
30 mm 4 Gs
0.4 mT
0.00 kg / 0.0 g
0.0 N
bezpieczny
50 mm 1 Gs
0.1 mT
0.00 kg / 0.0 g
0.0 N
bezpieczny

Tabela 2: Siła równoległa zsuwania (pion)
MW 5x3 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.17 kg / 168.0 g
1.6 N
1 mm Stal (~0.2) 0.07 kg / 66.0 g
0.6 N
2 mm Stal (~0.2) 0.02 kg / 20.0 g
0.2 N
3 mm Stal (~0.2) 0.01 kg / 6.0 g
0.1 N
5 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 5x3 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.25 kg / 252.0 g
2.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.17 kg / 168.0 g
1.6 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.08 kg / 84.0 g
0.8 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.42 kg / 420.0 g
4.1 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 5x3 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.08 kg / 84.0 g
0.8 N
1 mm
25%
0.21 kg / 210.0 g
2.1 N
2 mm
50%
0.42 kg / 420.0 g
4.1 N
5 mm
100%
0.84 kg / 840.0 g
8.2 N
10 mm
100%
0.84 kg / 840.0 g
8.2 N

Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 5x3 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 0.84 kg / 840.0 g
8.2 N
OK
40 °C -2.2% 0.82 kg / 821.5 g
8.1 N
OK
60 °C -4.4% 0.80 kg / 803.0 g
7.9 N
OK
80 °C -6.6% 0.78 kg / 784.6 g
7.7 N
100 °C -28.8% 0.60 kg / 598.1 g
5.9 N

Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 5x3 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 2.73 kg / 2725 g
26.7 N
5 700 Gs
N/A
1 mm 1.77 kg / 1775 g
17.4 N
7 658 Gs
1.60 kg / 1597 g
15.7 N
~0 Gs
2 mm 1.06 kg / 1057 g
10.4 N
5 910 Gs
0.95 kg / 951 g
9.3 N
~0 Gs
3 mm 0.60 kg / 602 g
5.9 N
4 460 Gs
0.54 kg / 542 g
5.3 N
~0 Gs
5 mm 0.19 kg / 192 g
1.9 N
2 520 Gs
0.17 kg / 173 g
1.7 N
~0 Gs
10 mm 0.02 kg / 17 g
0.2 N
745 Gs
0.02 kg / 15 g
0.1 N
~0 Gs
20 mm 0.00 kg / 1 g
0.0 N
147 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
12 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 5x3 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Czasomierz 20 Gs (2.0 mT) 2.0 cm
Urządzenie mobilne 40 Gs (4.0 mT) 1.5 cm
Pilot do auta 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 5x3 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 44.07 km/h
(12.24 m/s)
0.03 J
30 mm 76.32 km/h
(21.20 m/s)
0.10 J
50 mm 98.53 km/h
(27.37 m/s)
0.16 J
100 mm 139.35 km/h
(38.71 m/s)
0.33 J

Tabela 9: Parametry powłoki (trwałość)
MW 5x3 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Flux)
MW 5x3 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 942 Mx 9.4 µWb
Współczynnik Pc 0.66 Wysoki (Stabilny)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 5x3 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.84 kg Standard
Woda (dno rzeki) 0.96 kg
(+0.12 kg Zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły oderwania.

2. Wpływ grubości blachy

*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.

3. Praca w cieple

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010087-2025
Szybki konwerter jednostek
Siła oderwania

Moc pola

Sprawdź inne produkty

Prezentowany produkt to niezwykle mocny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø5x3 mm gwarantuje najwyższą gęstość energii. Komponent MW 5x3 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 0.84 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest idealny do budowy silników elektrycznych, zaawansowanych sensorów Halla oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 8.25 N przy wadze zaledwie 0.44 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na delikatną strukturę spieku ceramicznego, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego precyzyjnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Klasa N38 to najpopularniejszy standard dla profesjonalnych magnesów neodymowych, oferujący świetny balans ekonomiczny oraz stabilność pracy. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø5x3), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym magazynie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 5 mm i wysokość 3 mm. Kluczowym parametrem jest tutaj udźwig wynoszący około 0.84 kg (siła ~8.25 N), co przy tak kompaktowych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 3 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety oraz wady neodymowych magnesów Nd2Fe14B.

Korzyści

Magnesy neodymowe to nie tylko siła, ale także inne istotne cechy, w tym::
  • Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
  • Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
  • Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
  • Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Minusy

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
  • Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Parametry udźwigu

Najlepsza nośność magnesu w idealnych parametrachod czego zależy?

Deklarowana siła magnesu odnosi się do siły granicznej, którą zmierzono w środowisku optymalnym, a mianowicie:
  • na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
  • posiadającej masywność minimum 10 mm aby uniknąć nasycenia
  • charakteryzującej się równą strukturą
  • przy bezpośrednim styku (brak powłok)
  • podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
  • w standardowej temperaturze otoczenia

Determinanty praktycznego udźwigu magnesu

W rzeczywistych zastosowaniach, rzeczywisty udźwig jest determinowana przez wielu zmiennych, które przedstawiamy od najważniejszych:
  • Szczelina – występowanie jakiejkolwiek warstwy (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
  • Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
  • Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
  • Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal osłabiają chwyt.
  • Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).

Udźwig wyznaczano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje siłę trzymania.

Bezpieczna praca przy magnesach z neodymem
Ryzyko pęknięcia

Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.

Nadwrażliwość na metale

Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.

Ryzyko pożaru

Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.

Wpływ na smartfony

Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.

Uwaga medyczna

Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.

Ochrona dłoni

Silne magnesy mogą połamać palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa silne magnesy.

Ostrożność wymagana

Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.

Uwaga: zadławienie

Bezwzględnie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.

Ochrona urządzeń

Potężne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.

Maksymalna temperatura

Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.

Zachowaj ostrożność! Szukasz szczegółów? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98