MW 5x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010085
GTIN/EAN: 5906301810841
Średnica Ø
5 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.29 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.70 kg / 6.83 N
Indukcja magnetyczna
386.50 mT / 3865 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub skontaktuj się korzystając z
nasz formularz online
w sekcji kontakt.
Właściwości i kształt magnesów zweryfikujesz w naszym
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 5x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010085 |
| GTIN/EAN | 5906301810841 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.29 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.70 kg / 6.83 N |
| Indukcja magnetyczna ~ ? | 386.50 mT / 3865 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Poniższe informacje są bezpośredni efekt kalkulacji matematycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 5x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3860 Gs
386.0 mT
|
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
niskie ryzyko |
| 1 mm |
2460 Gs
246.0 mT
|
0.28 kg / 0.63 lbs
284.4 g / 2.8 N
|
niskie ryzyko |
| 2 mm |
1384 Gs
138.4 mT
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
niskie ryzyko |
| 3 mm |
782 Gs
78.2 mT
|
0.03 kg / 0.06 lbs
28.8 g / 0.3 N
|
niskie ryzyko |
| 5 mm |
293 Gs
29.3 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
niskie ryzyko |
| 10 mm |
55 Gs
5.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 5x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 5x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 5x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 1 mm |
|
0.18 kg / 0.39 lbs
175.0 g / 1.7 N
|
| 2 mm |
|
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 3 mm |
|
0.52 kg / 1.16 lbs
525.0 g / 5.2 N
|
| 5 mm |
|
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 10 mm |
|
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 11 mm |
|
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 12 mm |
|
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 5x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
OK |
| 40 °C | -2.2% |
0.68 kg / 1.51 lbs
684.6 g / 6.7 N
|
OK |
| 60 °C | -4.4% |
0.67 kg / 1.48 lbs
669.2 g / 6.6 N
|
|
| 80 °C | -6.6% |
0.65 kg / 1.44 lbs
653.8 g / 6.4 N
|
|
| 100 °C | -28.8% |
0.50 kg / 1.10 lbs
498.4 g / 4.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 5x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.80 kg / 3.98 lbs
5 236 Gs
|
0.27 kg / 0.60 lbs
271 g / 2.7 N
|
N/A |
| 1 mm |
1.21 kg / 2.68 lbs
6 336 Gs
|
0.18 kg / 0.40 lbs
182 g / 1.8 N
|
1.09 kg / 2.41 lbs
~0 Gs
|
| 2 mm |
0.73 kg / 1.62 lbs
4 921 Gs
|
0.11 kg / 0.24 lbs
110 g / 1.1 N
|
0.66 kg / 1.45 lbs
~0 Gs
|
| 3 mm |
0.42 kg / 0.92 lbs
3 711 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.83 lbs
~0 Gs
|
| 5 mm |
0.13 kg / 0.29 lbs
2 071 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.02 lbs
587 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
110 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 5x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 5x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
49.55 km/h
(13.77 m/s)
|
0.03 J | |
| 30 mm |
85.82 km/h
(23.84 m/s)
|
0.08 J | |
| 50 mm |
110.79 km/h
(30.78 m/s)
|
0.14 J | |
| 100 mm |
156.69 km/h
(43.52 m/s)
|
0.27 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 5x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 5x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 785 Mx | 7.9 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 5x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.70 kg | Standard |
| Woda (dno rzeki) |
0.80 kg
(+0.10 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- przy całkowitym braku odstępu (bez farby)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Kruchość materiału
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Niszczenie danych
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Maksymalna temperatura
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie życia
Pacjenci z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Zasady obsługi
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Zakaz zabawy
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
