MW 5x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010084
GTIN/EAN: 5906301810834
Średnica Ø
5 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
2.21 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.48 kg / 4.68 N
Indukcja magnetyczna
610.03 mT / 6100 Gs
Powłoka
[NiCuNi] nikiel
1.107 ZŁ z VAT / szt. + cena za transport
0.900 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie pisz za pomocą
formularz kontaktowy
na naszej stronie.
Właściwości i kształt magnesów neodymowych wyliczysz w naszym
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry produktu - MW 5x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010084 |
| GTIN/EAN | 5906301810834 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 2.21 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.48 kg / 4.68 N |
| Indukcja magnetyczna ~ ? | 610.03 mT / 6100 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione informacje są wynik kalkulacji inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 5x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6091 Gs
609.1 mT
|
0.48 kg / 480.0 g
4.7 N
|
niskie ryzyko |
| 1 mm |
3823 Gs
382.3 mT
|
0.19 kg / 189.1 g
1.9 N
|
niskie ryzyko |
| 2 mm |
2261 Gs
226.1 mT
|
0.07 kg / 66.1 g
0.6 N
|
niskie ryzyko |
| 3 mm |
1378 Gs
137.8 mT
|
0.02 kg / 24.6 g
0.2 N
|
niskie ryzyko |
| 5 mm |
607 Gs
60.7 mT
|
0.00 kg / 4.8 g
0.0 N
|
niskie ryzyko |
| 10 mm |
154 Gs
15.4 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 15 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 20 mm |
32 Gs
3.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 5x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.10 kg / 96.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 5x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 144.0 g
1.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.10 kg / 96.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 48.0 g
0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.24 kg / 240.0 g
2.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 5x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 48.0 g
0.5 N
|
| 1 mm |
|
0.12 kg / 120.0 g
1.2 N
|
| 2 mm |
|
0.24 kg / 240.0 g
2.4 N
|
| 5 mm |
|
0.48 kg / 480.0 g
4.7 N
|
| 10 mm |
|
0.48 kg / 480.0 g
4.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 5x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.48 kg / 480.0 g
4.7 N
|
OK |
| 40 °C | -2.2% |
0.47 kg / 469.4 g
4.6 N
|
OK |
| 60 °C | -4.4% |
0.46 kg / 458.9 g
4.5 N
|
OK |
| 80 °C | -6.6% |
0.45 kg / 448.3 g
4.4 N
|
|
| 100 °C | -28.8% |
0.34 kg / 341.8 g
3.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 5x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.49 kg / 4491 g
44.1 N
6 154 Gs
|
N/A |
| 1 mm |
2.91 kg / 2912 g
28.6 N
9 810 Gs
|
2.62 kg / 2621 g
25.7 N
~0 Gs
|
| 2 mm |
1.77 kg / 1769 g
17.4 N
7 646 Gs
|
1.59 kg / 1592 g
15.6 N
~0 Gs
|
| 3 mm |
1.05 kg / 1046 g
10.3 N
5 880 Gs
|
0.94 kg / 942 g
9.2 N
~0 Gs
|
| 5 mm |
0.37 kg / 372 g
3.7 N
3 507 Gs
|
0.34 kg / 335 g
3.3 N
~0 Gs
|
| 10 mm |
0.04 kg / 45 g
0.4 N
1 213 Gs
|
0.04 kg / 40 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 3 g
0.0 N
309 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
37 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 5x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 5x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
14.87 km/h
(4.13 m/s)
|
0.02 J | |
| 30 mm |
25.74 km/h
(7.15 m/s)
|
0.06 J | |
| 50 mm |
33.23 km/h
(9.23 m/s)
|
0.09 J | |
| 100 mm |
47.00 km/h
(13.06 m/s)
|
0.19 J |
Tabela 9: Odporność na korozję
MW 5x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 5x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 382 Mx | 13.8 µWb |
| Współczynnik Pc | 1.38 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.48 kg | Standard |
| Woda (dno rzeki) |
0.55 kg
(+0.07 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (między magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Wektor obciążenia – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka stal nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje nośność.
BHP przy magnesach
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Łamliwość magnesów
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Trwała utrata siły
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Ochrona dłoni
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
To nie jest zabawka
Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Pole magnetyczne a elektronika
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Siła neodymu
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
