MW 5x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010082
GTIN/EAN: 5906301810810
Średnica Ø
5 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.32 kg / 3.12 N
Indukcja magnetyczna
229.95 mT / 2300 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz zapytania
na naszej stronie.
Parametry a także formę magnesu skontrolujesz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
MW 5x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 5x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010082 |
| GTIN/EAN | 5906301810810 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.32 kg / 3.12 N |
| Indukcja magnetyczna ~ ? | 229.95 mT / 2300 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Przedstawione dane są bezpośredni efekt analizy inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
MW 5x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2298 Gs
229.8 mT
|
0.32 kg / 320.0 g
3.1 N
|
bezpieczny |
| 1 mm |
1570 Gs
157.0 mT
|
0.15 kg / 149.5 g
1.5 N
|
bezpieczny |
| 2 mm |
890 Gs
89.0 mT
|
0.05 kg / 48.0 g
0.5 N
|
bezpieczny |
| 3 mm |
495 Gs
49.5 mT
|
0.01 kg / 14.8 g
0.1 N
|
bezpieczny |
| 5 mm |
178 Gs
17.8 mT
|
0.00 kg / 1.9 g
0.0 N
|
bezpieczny |
| 10 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 15 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 5x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 5x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 96.0 g
0.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 64.0 g
0.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 32.0 g
0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.16 kg / 160.0 g
1.6 N
|
MW 5x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 32.0 g
0.3 N
|
| 1 mm |
|
0.08 kg / 80.0 g
0.8 N
|
| 2 mm |
|
0.16 kg / 160.0 g
1.6 N
|
| 5 mm |
|
0.32 kg / 320.0 g
3.1 N
|
| 10 mm |
|
0.32 kg / 320.0 g
3.1 N
|
MW 5x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.32 kg / 320.0 g
3.1 N
|
OK |
| 40 °C | -2.2% |
0.31 kg / 313.0 g
3.1 N
|
OK |
| 60 °C | -4.4% |
0.31 kg / 305.9 g
3.0 N
|
|
| 80 °C | -6.6% |
0.30 kg / 298.9 g
2.9 N
|
|
| 100 °C | -28.8% |
0.23 kg / 227.8 g
2.2 N
|
MW 5x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.64 kg / 639 g
6.3 N
3 860 Gs
|
N/A |
| 1 mm |
0.47 kg / 472 g
4.6 N
3 948 Gs
|
0.42 kg / 425 g
4.2 N
~0 Gs
|
| 2 mm |
0.30 kg / 299 g
2.9 N
3 141 Gs
|
0.27 kg / 269 g
2.6 N
~0 Gs
|
| 3 mm |
0.17 kg / 173 g
1.7 N
2 388 Gs
|
0.16 kg / 155 g
1.5 N
~0 Gs
|
| 5 mm |
0.05 kg / 53 g
0.5 N
1 322 Gs
|
0.05 kg / 48 g
0.5 N
~0 Gs
|
| 10 mm |
0.00 kg / 4 g
0.0 N
355 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
62 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
5 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 5x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 5x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
46.59 km/h
(12.94 m/s)
|
0.01 J | |
| 30 mm |
80.68 km/h
(22.41 m/s)
|
0.04 J | |
| 50 mm |
104.16 km/h
(28.93 m/s)
|
0.06 J | |
| 100 mm |
147.30 km/h
(40.92 m/s)
|
0.13 J |
MW 5x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 5x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 524 Mx | 5.2 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
MW 5x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.32 kg | Standard |
| Woda (dno rzeki) |
0.37 kg
(+0.05 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – od czego zależy?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z płaszczyzną wolną od rys
- w warunkach braku dystansu (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Łatwopalność
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Nadwrażliwość na metale
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Implanty medyczne
Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić działanie implantu.
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Produkt nie dla dzieci
Silne magnesy nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Urazy ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
