MW 4x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010075
GTIN/EAN: 5906301810742
Średnica Ø
4 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
0.94 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.32 kg / 3.16 N
Indukcja magnetyczna
606.05 mT / 6061 Gs
Powłoka
[NiCuNi] nikiel
0.800 ZŁ z VAT / szt. + cena za transport
0.650 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub skontaktuj się korzystając z
formularz
w sekcji kontakt.
Moc oraz formę magnesu neodymowego sprawdzisz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MW 4x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 4x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010075 |
| GTIN/EAN | 5906301810742 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 4 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 0.94 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.32 kg / 3.16 N |
| Indukcja magnetyczna ~ ? | 606.05 mT / 6061 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Poniższe dane są bezpośredni efekt analizy inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 4x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6049 Gs
604.9 mT
|
0.32 kg / 320.0 g
3.1 N
|
niskie ryzyko |
| 1 mm |
3327 Gs
332.7 mT
|
0.10 kg / 96.8 g
0.9 N
|
niskie ryzyko |
| 2 mm |
1732 Gs
173.2 mT
|
0.03 kg / 26.2 g
0.3 N
|
niskie ryzyko |
| 3 mm |
969 Gs
96.9 mT
|
0.01 kg / 8.2 g
0.1 N
|
niskie ryzyko |
| 5 mm |
389 Gs
38.9 mT
|
0.00 kg / 1.3 g
0.0 N
|
niskie ryzyko |
| 10 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 4x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 4x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 96.0 g
0.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 64.0 g
0.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 32.0 g
0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.16 kg / 160.0 g
1.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 4x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 32.0 g
0.3 N
|
| 1 mm |
|
0.08 kg / 80.0 g
0.8 N
|
| 2 mm |
|
0.16 kg / 160.0 g
1.6 N
|
| 5 mm |
|
0.32 kg / 320.0 g
3.1 N
|
| 10 mm |
|
0.32 kg / 320.0 g
3.1 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 4x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.32 kg / 320.0 g
3.1 N
|
OK |
| 40 °C | -2.2% |
0.31 kg / 313.0 g
3.1 N
|
OK |
| 60 °C | -4.4% |
0.31 kg / 305.9 g
3.0 N
|
OK |
| 80 °C | -6.6% |
0.30 kg / 298.9 g
2.9 N
|
|
| 100 °C | -28.8% |
0.23 kg / 227.8 g
2.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 4x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.83 kg / 2835 g
27.8 N
6 138 Gs
|
N/A |
| 1 mm |
1.63 kg / 1630 g
16.0 N
9 174 Gs
|
1.47 kg / 1467 g
14.4 N
~0 Gs
|
| 2 mm |
0.86 kg / 858 g
8.4 N
6 655 Gs
|
0.77 kg / 772 g
7.6 N
~0 Gs
|
| 3 mm |
0.44 kg / 442 g
4.3 N
4 777 Gs
|
0.40 kg / 398 g
3.9 N
~0 Gs
|
| 5 mm |
0.13 kg / 127 g
1.2 N
2 561 Gs
|
0.11 kg / 114 g
1.1 N
~0 Gs
|
| 10 mm |
0.01 kg / 12 g
0.1 N
778 Gs
|
0.01 kg / 11 g
0.1 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
179 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
19 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 4x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 4x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.61 km/h
(5.17 m/s)
|
0.01 J | |
| 30 mm |
32.23 km/h
(8.95 m/s)
|
0.04 J | |
| 50 mm |
41.61 km/h
(11.56 m/s)
|
0.06 J | |
| 100 mm |
58.84 km/h
(16.35 m/s)
|
0.13 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 4x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 4x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 864 Mx | 8.6 µWb |
| Współczynnik Pc | 1.31 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 4x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.32 kg | Standard |
| Woda (dno rzeki) |
0.37 kg
(+0.05 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.31
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki powłoce (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- z płaszczyzną oczyszczoną i gładką
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (farba, brud, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Bezpieczna praca przy magnesach neodymowych
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Implanty medyczne
Osoby z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Produkt nie dla dzieci
Bezwzględnie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ogromna siła
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Ostrzeżenie dla alergików
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
