Magnesy neodymowe – najsilniejsze na rynku

Szukasz ogromnej mocy w małym rozmiarze? Posiadamy w sprzedaży szeroki wybór magnesów o różnych kształtach i wymiarach. Są one idealne do zastosowań domowych, garażu oraz zadań przemysłowych. Przejrzyj asortyment w naszym magazynie.

zobacz pełną ofertę

Zestawy do magnet fishing (hobbystów)

Zacznij swoje hobby związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w rzekach i jeziorach.

wybierz zestaw dla siebie

Uchwyty magnetyczne montażowe

Sprawdzone rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na magazynach. Są niezastąpione przy mocowaniu oświetlenia, sensorów oraz banerów.

sprawdź zastosowania przemysłowe

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 4x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010075

GTIN/EAN: 5906301810742

5.00

Średnica Ø

4 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

0.94 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.32 kg / 3.16 N

Indukcja magnetyczna

606.05 mT / 6061 Gs

Powłoka

[NiCuNi] nikiel

0.800 z VAT / szt. + cena za transport

0.650 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.650 ZŁ
0.800 ZŁ
cena od 1000 szt.
0.611 ZŁ
0.752 ZŁ
cena od 3900 szt.
0.572 ZŁ
0.704 ZŁ
Chcesz się targować?

Dzwoń do nas +48 888 99 98 98 lub pisz przez formularz na stronie kontakt.
Udźwig i formę magnesów testujesz u nas w kalkulatorze mocy.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Dane techniczne produktu - MW 4x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 4x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010075
GTIN/EAN 5906301810742
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 4 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 0.94 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.32 kg / 3.16 N
Indukcja magnetyczna ~ ? 606.05 mT / 6061 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 4x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu neodymowego - raport

Niniejsze wartości są wynik analizy matematycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 4x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 6049 Gs
604.9 mT
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
niskie ryzyko
1 mm 3327 Gs
332.7 mT
0.10 kg / 0.21 lbs
96.8 g / 0.9 N
niskie ryzyko
2 mm 1732 Gs
173.2 mT
0.03 kg / 0.06 lbs
26.2 g / 0.3 N
niskie ryzyko
3 mm 969 Gs
96.9 mT
0.01 kg / 0.02 lbs
8.2 g / 0.1 N
niskie ryzyko
5 mm 389 Gs
38.9 mT
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
niskie ryzyko
10 mm 90 Gs
9.0 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
15 mm 35 Gs
3.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
20 mm 17 Gs
1.7 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
30 mm 6 Gs
0.6 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
50 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Równoległa siła obsunięcia (ściana)
MW 4x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.06 kg / 0.14 lbs
64.0 g / 0.6 N
1 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
2 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
3 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 4x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.16 kg / 0.35 lbs
160.0 g / 1.6 N

Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 4x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
1 mm
25%
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
2 mm
50%
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
3 mm
75%
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
5 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
10 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
11 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
12 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 4x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.32 kg / 0.71 lbs
320.0 g / 3.1 N
OK
40 °C -2.2% 0.31 kg / 0.69 lbs
313.0 g / 3.1 N
OK
60 °C -4.4% 0.31 kg / 0.67 lbs
305.9 g / 3.0 N
OK
80 °C -6.6% 0.30 kg / 0.66 lbs
298.9 g / 2.9 N
100 °C -28.8% 0.23 kg / 0.50 lbs
227.8 g / 2.2 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 4x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.83 kg / 6.25 lbs
6 138 Gs
0.43 kg / 0.94 lbs
425 g / 4.2 N
N/A
1 mm 1.63 kg / 3.59 lbs
9 174 Gs
0.24 kg / 0.54 lbs
244 g / 2.4 N
1.47 kg / 3.23 lbs
~0 Gs
2 mm 0.86 kg / 1.89 lbs
6 655 Gs
0.13 kg / 0.28 lbs
129 g / 1.3 N
0.77 kg / 1.70 lbs
~0 Gs
3 mm 0.44 kg / 0.97 lbs
4 777 Gs
0.07 kg / 0.15 lbs
66 g / 0.7 N
0.40 kg / 0.88 lbs
~0 Gs
5 mm 0.13 kg / 0.28 lbs
2 561 Gs
0.02 kg / 0.04 lbs
19 g / 0.2 N
0.11 kg / 0.25 lbs
~0 Gs
10 mm 0.01 kg / 0.03 lbs
778 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
179 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 4x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.5 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Immobilizer 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 4x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 18.61 km/h
(5.17 m/s)
0.01 J
30 mm 32.23 km/h
(8.95 m/s)
0.04 J
50 mm 41.61 km/h
(11.56 m/s)
0.06 J
100 mm 58.84 km/h
(16.35 m/s)
0.13 J

Tabela 9: Parametry powłoki (trwałość)
MW 4x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 4x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 864 Mx 8.6 µWb
Współczynnik Pc 1.31 Wysoki (Stabilny)

Tabela 11: Zastosowanie podwodne
MW 4x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.32 kg Standard
Woda (dno rzeki) 0.37 kg
(+0.05 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Udźwig w pionie

*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ułamek nominalnego udźwigu.

2. Efektywność, a grubość stali

*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.

3. Stabilność termiczna

*Dla standardowych magnesów krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.31

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010075-2026
Kalkulator miar
Siła oderwania

Pole magnetyczne

Zobacz też inne propozycje

Prezentowany produkt to bardzo silny magnes walcowy, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø4x10 mm gwarantuje najwyższą gęstość energii. Komponent MW 4x10 / N38 cechuje się dokładnością ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 0.32 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest idealny do budowy prądnic, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 3.16 N przy wadze zaledwie 0.94 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 4,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się żywice anaerobowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Klasa N38 to najczęściej wybierany standard dla przemysłowych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz wysoką odporność na demagnetyzację. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø4x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø4x10 mm, co przy wadze 0.94 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj udźwig wynoszący około 0.32 kg (siła ~3.16 N), co przy tak określonych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten walec jest magnesowany osiowo (wzdłuż wysokości 10 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest najbardziej pożądany przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety i wady magnesów neodymowych Nd2Fe14B.

Korzyści

Oprócz ponadprzeciętną mocą, te produkty gwarantują dodatkowe korzyści::
  • Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
  • Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
  • Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
  • Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
  • Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
  • Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.

Słabe strony

Warto znać też słabe strony magnesów neodymowych:
  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
  • Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.

Analiza siły trzymania

Wytrzymałość na oderwanie magnesu w warunkach idealnychco się na to składa?

Siła oderwania została wyznaczona dla warunków idealnego styku, uwzględniającej:
  • z zastosowaniem blachy ze miękkiej stali, która służy jako element zamykający obwód
  • której wymiar poprzeczny to min. 10 mm
  • charakteryzującej się gładkością
  • w warunkach bezszczelinowych (powierzchnia do powierzchni)
  • przy prostopadłym kierunku działania siły (kąt 90 stopni)
  • przy temperaturze otoczenia pokojowej

Praktyczny udźwig: czynniki wpływające

W rzeczywistych zastosowaniach, rzeczywisty udźwig zależy od szeregu czynników, które przedstawiamy od kluczowych:
  • Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
  • Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
  • Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
  • Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
  • Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.

Instrukcja bezpiecznej obsługi magnesów
Niklowa powłoka a alergia

Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.

Zagrożenie życia

Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.

Produkt nie dla dzieci

Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.

Nie zbliżaj do komputera

Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).

Zakaz obróbki

Pył generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.

Ochrona dłoni

Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.

Uwaga na odpryski

Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.

Ostrożność wymagana

Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.

Smartfony i tablety

Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.

Trwała utrata siły

Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.

Bezpieczeństwo! Dowiedz się więcej o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98